1
0
Fork 0
mirror of https://github.com/bitcoin/bips.git synced 2025-02-26 00:14:27 +01:00

Switch to 32 byte public keys in bip-schnorr

This commit is contained in:
Jonas Nick 2019-07-06 16:32:41 +00:00
parent 1faf705388
commit ed01c1a776
4 changed files with 288 additions and 54 deletions

View file

@ -35,6 +35,7 @@ propose a new standard, a number of improvements not specific to Schnorr signatu
made:
* '''Signature encoding''': Instead of [https://en.wikipedia.org/wiki/X.690#DER_encoding DER]-encoding for signatures (which are variable size, and up to 72 bytes), we can use a simple fixed 64-byte format.
* '''Public key encoding''': Instead of ''compressed'' 33-byte encoding of elliptic curve points which are common in Bitcoin, public keys in this proposal are encoded as 32 bytes.
* '''Batch verification''': The specific formulation of ECDSA signatures that is standardized cannot be verified more efficiently in batch compared to individually, unless additional witness data is added. Changing the signature scheme offers an opportunity to avoid this.
[[File:bip-schnorr/speedup-batch.png|frame|This graph shows the ratio between the time it takes to verify ''n'' signatures individually and to verify a batch of ''n'' signatures. This ratio goes up logarithmically with the number of signatures, or in other words: the total time to verify ''n'' signatures grows with ''O(n / log n)''.]]
@ -57,24 +58,35 @@ We choose the ''R''-option to support batch verification.
'''Key prefixing''' When using the verification rule above directly, it is possible for a third party to convert a signature ''(R,s)'' for key ''P'' into a signature ''(R,s + aH(R || m))'' for key ''P + aG'' and the same message, for any integer ''a''. This is not a concern for Bitcoin currently, as all signature hashes indirectly commit to the public keys. However, this may change with proposals such as SIGHASH_NOINPUT ([https://github.com/bitcoin/bips/blob/master/bip-0118.mediawiki BIP 118]), or when the signature scheme is used for other purposes&mdash;especially in combination with schemes like [https://github.com/bitcoin/bips/blob/master/bip-0032.mediawiki BIP32]'s unhardened derivation. To combat this, we choose ''key prefixed''<ref>A limitation of committing to the public key (rather than to a short hash of it, or not at all) is that it removes the ability for public key recovery or verifying signatures against a short public key hash. These constructions are generally incompatible with batch verification.</ref> Schnorr signatures; changing the equation to ''sG = R + H(R || P || m)P''.
'''Encoding the sign of R''' As we chose the ''R''-option above, we're required to encode the point ''R'' into the signature. Several possibilities exist:
'''Encoding the sign of P and the sign of R''' There exist several possibilities for encoding the sign of the public key point:
# Encoding the full X and Y coordinate of P, resulting in a 64-byte public key.
# Encoding the full X coordinate, but only whether Y is even or odd (like compressed public keys). This would result in 33-byte public keys.
# Encoding only the X coordinate, resulting in 32-byte public keys.
As we chose the ''R''-option above, we're required to encode the point ''R'' into the signature. The possibilities are similar to the encoding of ''P'':
# Encoding the full X and Y coordinate of R, resulting in a 96-byte signature.
# Encoding the full X coordinate, but only whether Y is even or odd (like compressed public keys). This would result in 65-byte signatures.
# Encoding only the X coordinate, leaving us with 64-byte signature.
Using the first option would be slightly more efficient for verification (around 5%), but we prioritize compactness, and therefore choose option 3.
Using the first option for both ''P'' and ''R'' would be slightly more efficient for verification (around 5%), but we prioritize compactness, and therefore choose option 3.
'''Implicit Y coordinate''' In order to support batch verification, the Y coordinate of ''R'' cannot be ambiguous (every valid X coordinate has two possible Y coordinates). We have a choice between several options for symmetry breaking:
'''Implicit Y coordinates''' In order to support batch verification, the Y coordinate of ''P'' and of ''R'' cannot be ambiguous (every valid X coordinate has two possible Y coordinates). We have a choice between several options for symmetry breaking:
# Implicitly choosing the Y coordinate that is in the lower half.
# Implicitly choosing the Y coordinate that is even<ref>Since ''p'' is odd, negation modulo ''p'' will map even numbers to odd numbers and the other way around. This means that for a valid X coordinate, one of the corresponding Y coordinates will be even, and the other will be odd.</ref>.
# Implicitly choosing the Y coordinate that is a quadratic residue (has a square root modulo the field size)<ref>A product of two numbers is a quadratic residue when either both or none of the factors are quadratic residues. As ''-1'' is not a quadratic residue, and the two Y coordinates corresponding to a given X coordinate are each other's negation, this means exactly one of the two must be a quadratic residue.</ref>.
The third option is slower at signing time but a bit faster to verify, as the quadratic residue of the Y coordinate can be computed directly for points represented in
In the case of ''R'' the third option is slower at signing time but a bit faster to verify, as the quadratic residue of the Y coordinate can be computed directly for points represented in
[https://en.wikibooks.org/wiki/Cryptography/Prime_Curve/Jacobian_Coordinates Jacobian coordinates] (a common optimization to avoid modular inverses
for elliptic curve operations). The two other options require a possibly
expensive conversion to affine coordinates first. This would even be the case if the sign or oddness were explicitly coded (option 2 in the previous design choice). We therefore choose option 3.
'''Final scheme''' As a result, our final scheme ends up using signatures ''(r,s)'' where ''r'' is the X coordinate of a point ''R'' on the curve whose Y coordinate is a quadratic residue, and which satisfies ''sG = R + H(r || P || m)P''.
For ''P'' the speed of signing and verification is not significantly different between any of the three options because affine coordinates of the point have to computed anyway. We therefore choose the same option as for ''R''. The signing algorithm ensures that the signature is valid under the correct public key by negating the secret key if necessary.
It is important to not mix up the 32 byte public key format and other existing public key formats. Concretely, a verifier should only accept 32 byte public keys and not, for example, convert a 33 byte public key by throwing away the first byte. Otherwise, two public keys would be valid for a single signature which can result in subtle malleability issues.
Implicit Y coordinates are not a reduction in security when expressed as the number of elliptic curve operations an attacker is expected to perform to compute the secret key. An attacker can normalize any given public key to a point whose Y coordinate is a quadratic residue by negating the point if necessary. This is just a subtraction of field elements and not an elliptic curve operation.
'''Final scheme''' As a result, our final scheme ends up using public keys ''p'' where ''p'' is the X coordinate of a point ''P'' on the curve whose Y coordinate is a quadratic residue and signatures ''(r,s)'' where ''r'' is the X coordinate of a point ''R'' whose Y coordinate is a quadratic residue. The signature satisfies ''sG = R + H(r || p || m)P''.
=== Specification ===
@ -94,26 +106,27 @@ The following convention is used, with constants as defined for secp256k1:
** ''||'' refers to byte array concatenation.
** The function ''x[i:j]'', where ''x'' is a byte array, returns a ''(j - i)''-byte array with a copy of the ''i''-th byte (inclusive) to the ''j''-th byte (exclusive) of ''x''.
** The function ''bytes(x)'', where ''x'' is an integer, returns the 32-byte encoding of ''x'', most significant byte first.
** The function ''bytes(P)'', where ''P'' is a point, returns ''bytes(0x02 + (y(P) & 1)) || bytes(x(P))''<ref>This matches the ''compressed'' encoding for elliptic curve points used in Bitcoin already, following section 2.3.3 of the [http://www.secg.org/sec1-v2.pdf SEC 1] standard.</ref>.
** The function ''bytes(P)'', where ''P'' is a point, returns ''bytes(x(P))'.
** The function ''int(x)'', where ''x'' is a 32-byte array, returns the 256-bit unsigned integer whose most significant byte encoding is ''x''.
** The function ''lift_x(x)'', where ''x'' is an integer in range ''0..p-1'', returns the point ''P'' for which ''x(P) = x'' and ''y(P)'' is a quadratic residue modulo ''p'', or fails if no such point exists<ref>Given an candidate X coordinate ''x'' in the range ''0..p-1'', there exist either exactly two or exactly zero valid Y coordinates. If no valid Y coordinate exists, then ''x'' is not a valid X coordinate either, i.e., no point ''P'' exists for which ''x(P) = x''. Given a candidate ''x'', the valid Y coordinates are the square roots of ''c = x<sup>3</sup> + 7 mod p'' and they can be computed as ''y = &plusmn;c<sup>(p+1)/4</sup> mod p'' (see [https://en.wikipedia.org/wiki/Quadratic_residue#Prime_or_prime_power_modulus Quadratic residue]) if they exist, which can be checked by squaring and comparing with ''c''. Due to [https://en.wikipedia.org/wiki/Euler%27s_criterion Euler's criterion] it then holds that ''c<sup>(p-1)/2</sup> = 1 mod p''. The same criterion applied to ''y'' results in ''y<sup>(p-1)/2</sup> mod p = &plusmn;c<sup>((p+1)/4)((p-1)/2)</sup> mod p = &plusmn;1 mod p''. Therefore ''y = +c<sup>(p+1)/4</sup> mod p'' is a quadratic residue and ''-y mod p'' is not.</ref>. The function ''lift_x(x)'' is equivalent to the following pseudocode:
*** Let ''y = c<sup>(p+1)/4</sup> mod p''.
*** Fail if ''c &ne; y<sup>2</sup> mod p''.
*** Return ''(r, y)''.
** The function ''point(x)'', where ''x'' is a 33-byte array, returns the point ''P'' for which ''x(P) = int(x[1:33])'' and ''y(P) & 1 = int(x[0:1]) - 0x02)'', or fails if no such point exists. The function ''point(x)'' is equivalent to the following pseudocode:
*** Fail if (''x[0:1] ≠ 0x02'' and ''x[0:1] ≠ 0x03'').
*** Set flag ''odd'' if ''x[0:1] = 0x03''.
*** Let ''(r, y) = lift_x(x)''; fail if ''lift_x(x)'' fails.
*** If (flag ''odd'' is set and ''y'' is an even integer) or (flag ''odd'' is not set and ''y'' is an odd integer):
**** Let ''y = p - y''.
*** Return ''(r, y)''.
** The function ''point(x)'', where ''x'' is a 32-byte array, returns the point ''P = lift_x(int(x))''.
** The function ''hash(x)'', where ''x'' is a byte array, returns the 32-byte SHA256 hash of ''x''.
** The function ''jacobi(x)'', where ''x'' is an integer, returns the [https://en.wikipedia.org/wiki/Jacobi_symbol Jacobi symbol] of ''x / p''. It is equal to ''x<sup>(p-1)/2</sup> mod p'' ([https://en.wikipedia.org/wiki/Euler%27s_criterion Euler's criterion])<ref>For points ''P'' on the secp256k1 curve it holds that ''jacobi(y(P)) &ne; 0''.</ref>.
=== Public Key Generation ===
Input:
* The secret key ''d'': an integer in the range ''1..n-1'' chosen uniformly at random.
The public key corresponding to secret key ''d'' is ''bytes(dG)''.
==== Verification ====
Input:
* The public key ''pk'': a 33-byte array
* The public key ''pk'': a 32-byte array
* The message ''m'': a 32-byte array
* A signature ''sig'': a 64-byte array
@ -130,7 +143,7 @@ The signature is valid if and only if the algorithm below does not fail.
Input:
* The number ''u'' of signatures
* The public keys ''pk<sub>1..u</sub>'': ''u'' 33-byte arrays
* The public keys ''pk<sub>1..u</sub>'': ''u'' 32-byte arrays
* The messages ''m<sub>1..u</sub>'': ''u'' 32-byte arrays
* The signatures ''sig<sub>1..u</sub>'': ''u'' 64-byte arrays
@ -147,16 +160,18 @@ All provided signatures are valid with overwhelming probability if and only if t
==== Signing ====
Input:
* The secret key ''d'': an integer in the range ''1..n-1''.
* The secret key ''d' '': an integer in the range ''1..n-1'' chosen uniformly at random.
* The message ''m'': a 32-byte array
To sign ''m'' for public key ''dG'':
To sign ''m'' for public key ''bytes(dG)'':
* Let ''P = dG''
* Let ''d = d' '' if ''jacobi(y(P)) = 1'', otherwise let ''d = n - d' ''.
* Let ''k' = int(hash(bytes(d) || m)) mod n''<ref>Note that in general, taking the output of a hash function modulo the curve order will produce an unacceptably biased result. However, for the secp256k1 curve, the order is sufficiently close to ''2<sup>256</sup>'' that this bias is not observable (''1 - n / 2<sup>256</sup>'' is around ''1.27 * 2<sup>-128</sup>'').</ref>.
* Fail if ''k' = 0''.
* Let ''R = k'G''.
* Let ''k = k' '' if ''jacobi(y(R)) = 1'', otherwise let ''k = n - k' ''.
* Let ''e = int(hash(bytes(x(R)) || bytes(dG) || m)) mod n''.
* The signature is ''bytes(x(R)) || bytes((k + ed) mod n)''.
* Let ''e = int(hash(bytes(R) || bytes(P) || m)) mod n''.
* The signature is ''bytes(R) || bytes((k + ed) mod n)''.
'''Above deterministic derivation of ''R'' is designed specifically for this signing algorithm and may not be secure when used in other signature schemes.'''
For example, using the same derivation in the MuSig multi-signature scheme leaks the secret key (see the [https://eprint.iacr.org/2018/068 MuSig paper] for details).

View file

@ -31,19 +31,14 @@ def bytes_from_int(x):
return x.to_bytes(32, byteorder="big")
def bytes_from_point(P):
return (b'\x03' if P[1] & 1 else b'\x02') + bytes_from_int(P[0])
return bytes_from_int(P[0])
def point_from_bytes(b):
if b[0:1] in [b'\x02', b'\x03']:
odd = b[0] - 0x02
else:
return None
x = int_from_bytes(b[1:33])
x = int_from_bytes(b)
y_sq = (pow(x, 3, p) + 7) % p
y0 = pow(y_sq, (p + 1) // 4, p)
if pow(y0, 2, p) != y_sq:
y = pow(y_sq, (p + 1) // 4, p)
if pow(y, 2, p) != y_sq:
return None
y = p - y0 if y0 & 1 != odd else y0
return [x, y]
def int_from_bytes(b):
@ -55,24 +50,30 @@ def hash_sha256(b):
def jacobi(x):
return pow(x, (p - 1) // 2, p)
def schnorr_sign(msg, seckey):
def pubkey_gen(seckey):
P = point_mul(G, seckey)
return bytes_from_point(P)
def schnorr_sign(msg, seckey0):
if len(msg) != 32:
raise ValueError('The message must be a 32-byte array.')
if not (1 <= seckey <= n - 1):
if not (1 <= seckey0 <= n - 1):
raise ValueError('The secret key must be an integer in the range 1..n-1.')
P = point_mul(G, seckey0)
seckey = seckey0 if (jacobi(P[1]) == 1) else n - seckey0
k0 = int_from_bytes(hash_sha256(bytes_from_int(seckey) + msg)) % n
if k0 == 0:
raise RuntimeError('Failure. This happens only with negligible probability.')
R = point_mul(G, k0)
k = n - k0 if (jacobi(R[1]) != 1) else k0
e = int_from_bytes(hash_sha256(bytes_from_int(R[0]) + bytes_from_point(point_mul(G, seckey)) + msg)) % n
return bytes_from_int(R[0]) + bytes_from_int((k + e * seckey) % n)
e = int_from_bytes(hash_sha256(bytes_from_point(R) + bytes_from_point(P) + msg)) % n
return bytes_from_point(R) + bytes_from_int((k + e * seckey) % n)
def schnorr_verify(msg, pubkey, sig):
if len(msg) != 32:
raise ValueError('The message must be a 32-byte array.')
if len(pubkey) != 33:
raise ValueError('The public key must be a 33-byte array.')
if len(pubkey) != 32:
raise ValueError('The public key must be a 32-byte array.')
if len(sig) != 64:
raise ValueError('The signature must be a 64-byte array.')
P = point_from_bytes(pubkey)
@ -82,7 +83,7 @@ def schnorr_verify(msg, pubkey, sig):
s = int_from_bytes(sig[32:64])
if (r >= p or s >= n):
return False
e = int_from_bytes(hash_sha256(sig[0:32] + bytes_from_point(P) + msg)) % n
e = int_from_bytes(hash_sha256(sig[0:32] + pubkey + msg)) % n
R = point_add(point_mul(G, s), point_mul(P, n - e))
if R is None or jacobi(R[1]) != 1 or R[0] != r:
return False
@ -107,20 +108,25 @@ def test_vectors():
print('\nTest vector #%-3i: ' % int(index))
if seckey != '':
seckey = int(seckey, 16)
pubkey_actual = pubkey_gen(seckey)
if pubkey != pubkey_actual:
print(' * Failed key generation.')
print(' Expected key:', pubkey.hex().upper())
print(' Actual key:', pubkey_actual.hex().upper())
sig_actual = schnorr_sign(msg, seckey)
if sig == sig_actual:
print(' * Passed signing test.')
else:
print(' * Failed signing test.')
print(' Excepted signature:', sig.hex())
print(' Actual signature:', sig_actual.hex())
print(' Expected signature:', sig.hex().upper())
print(' Actual signature:', sig_actual.hex().upper())
all_passed = False
result_actual = schnorr_verify(msg, pubkey, sig)
if result == result_actual:
print(' * Passed verification test.')
else:
print(' * Failed verification test.')
print(' Excepted verification result:', result)
print(' Expected verification result:', result)
print(' Actual verification result:', result_actual)
if comment:
print(' Comment:', comment)

View file

@ -1,17 +1,15 @@
index,secret key,public key,message,signature,verification result,comment
1,0000000000000000000000000000000000000000000000000000000000000001,0279BE667EF9DCBBAC55A06295CE870B07029BFCDB2DCE28D959F2815B16F81798,0000000000000000000000000000000000000000000000000000000000000000,787A848E71043D280C50470E8E1532B2DD5D20EE912A45DBDD2BD1DFBF187EF67031A98831859DC34DFFEEDDA86831842CCD0079E1F92AF177F7F22CC1DCED05,TRUE,
2,B7E151628AED2A6ABF7158809CF4F3C762E7160F38B4DA56A784D9045190CFEF,02DFF1D77F2A671C5F36183726DB2341BE58FEAE1DA2DECED843240F7B502BA659,243F6A8885A308D313198A2E03707344A4093822299F31D0082EFA98EC4E6C89,2A298DACAE57395A15D0795DDBFD1DCB564DA82B0F269BC70A74F8220429BA1D1E51A22CCEC35599B8F266912281F8365FFC2D035A230434A1A64DC59F7013FD,TRUE,
3,C90FDAA22168C234C4C6628B80DC1CD129024E088A67CC74020BBEA63B14E5C7,03FAC2114C2FBB091527EB7C64ECB11F8021CB45E8E7809D3C0938E4B8C0E5F84B,5E2D58D8B3BCDF1ABADEC7829054F90DDA9805AAB56C77333024B9D0A508B75C,00DA9B08172A9B6F0466A2DEFD817F2D7AB437E0D253CB5395A963866B3574BE00880371D01766935B92D2AB4CD5C8A2A5837EC57FED7660773A05F0DE142380,TRUE,
4,,03DEFDEA4CDB677750A420FEE807EACF21EB9898AE79B9768766E4FAA04A2D4A34,4DF3C3F68FCC83B27E9D42C90431A72499F17875C81A599B566C9889B9696703,00000000000000000000003B78CE563F89A0ED9414F5AA28AD0D96D6795F9C6302A8DC32E64E86A333F20EF56EAC9BA30B7246D6D25E22ADB8C6BE1AEB08D49D,TRUE,
5,,031B84C5567B126440995D3ED5AABA0565D71E1834604819FF9C17F5E9D5DD078F,0000000000000000000000000000000000000000000000000000000000000000,52818579ACA59767E3291D91B76B637BEF062083284992F2D95F564CA6CB4E3530B1DA849C8E8304ADC0CFE870660334B3CFC18E825EF1DB34CFAE3DFC5D8187,TRUE,"test fails if jacobi symbol of x(R) instead of y(R) is used"
6,,03FAC2114C2FBB091527EB7C64ECB11F8021CB45E8E7809D3C0938E4B8C0E5F84B,FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF,570DD4CA83D4E6317B8EE6BAE83467A1BF419D0767122DE409394414B05080DCE9EE5F237CBD108EABAE1E37759AE47F8E4203DA3532EB28DB860F33D62D49BD,TRUE,"test fails if msg is reduced modulo p or n"
7,,03EEFDEA4CDB677750A420FEE807EACF21EB9898AE79B9768766E4FAA04A2D4A34,4DF3C3F68FCC83B27E9D42C90431A72499F17875C81A599B566C9889B9696703,00000000000000000000003B78CE563F89A0ED9414F5AA28AD0D96D6795F9C6302A8DC32E64E86A333F20EF56EAC9BA30B7246D6D25E22ADB8C6BE1AEB08D49D,FALSE,"public key not on the curve"
8,,02DFF1D77F2A671C5F36183726DB2341BE58FEAE1DA2DECED843240F7B502BA659,243F6A8885A308D313198A2E03707344A4093822299F31D0082EFA98EC4E6C89,2A298DACAE57395A15D0795DDBFD1DCB564DA82B0F269BC70A74F8220429BA1DFA16AEE06609280A19B67A24E1977E4697712B5FD2943914ECD5F730901B4AB7,FALSE,"incorrect R residuosity"
9,,03FAC2114C2FBB091527EB7C64ECB11F8021CB45E8E7809D3C0938E4B8C0E5F84B,5E2D58D8B3BCDF1ABADEC7829054F90DDA9805AAB56C77333024B9D0A508B75C, 00DA9B08172A9B6F0466A2DEFD817F2D7AB437E0D253CB5395A963866B3574BED092F9D860F1776A1F7412AD8A1EB50DACCC222BC8C0E26B2056DF2F273EFDEC,FALSE,"negated message"
10,,0279BE667EF9DCBBAC55A06295CE870B07029BFCDB2DCE28D959F2815B16F81798,0000000000000000000000000000000000000000000000000000000000000000,787A848E71043D280C50470E8E1532B2DD5D20EE912A45DBDD2BD1DFBF187EF68FCE5677CE7A623CB20011225797CE7A8DE1DC6CCD4F754A47DA6C600E59543C,FALSE,"negated s value"
11,,03DFF1D77F2A671C5F36183726DB2341BE58FEAE1DA2DECED843240F7B502BA659,243F6A8885A308D313198A2E03707344A4093822299F31D0082EFA98EC4E6C89,2A298DACAE57395A15D0795DDBFD1DCB564DA82B0F269BC70A74F8220429BA1D1E51A22CCEC35599B8F266912281F8365FFC2D035A230434A1A64DC59F7013FD,FALSE,"negated public key"
12,,02DFF1D77F2A671C5F36183726DB2341BE58FEAE1DA2DECED843240F7B502BA659,243F6A8885A308D313198A2E03707344A4093822299F31D0082EFA98EC4E6C89,00000000000000000000000000000000000000000000000000000000000000009E9D01AF988B5CEDCE47221BFA9B222721F3FA408915444A4B489021DB55775F,FALSE,"sG - eP is infinite. Test fails in single verification if jacobi(y(inf)) is defined as 1 and x(inf) as 0"
13,,02DFF1D77F2A671C5F36183726DB2341BE58FEAE1DA2DECED843240F7B502BA659,243F6A8885A308D313198A2E03707344A4093822299F31D0082EFA98EC4E6C89,0000000000000000000000000000000000000000000000000000000000000001D37DDF0254351836D84B1BD6A795FD5D523048F298C4214D187FE4892947F728,FALSE,"sG - eP is infinite. Test fails in single verification if jacobi(y(inf)) is defined as 1 and x(inf) as 1"
14,,02DFF1D77F2A671C5F36183726DB2341BE58FEAE1DA2DECED843240F7B502BA659,243F6A8885A308D313198A2E03707344A4093822299F31D0082EFA98EC4E6C89,4A298DACAE57395A15D0795DDBFD1DCB564DA82B0F269BC70A74F8220429BA1D1E51A22CCEC35599B8F266912281F8365FFC2D035A230434A1A64DC59F7013FD,FALSE,"sig[0:32] is not an X coordinate on the curve"
15,,02DFF1D77F2A671C5F36183726DB2341BE58FEAE1DA2DECED843240F7B502BA659,243F6A8885A308D313198A2E03707344A4093822299F31D0082EFA98EC4E6C89,FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFC2F1E51A22CCEC35599B8F266912281F8365FFC2D035A230434A1A64DC59F7013FD,FALSE,"sig[0:32] is equal to field size"
16,,02DFF1D77F2A671C5F36183726DB2341BE58FEAE1DA2DECED843240F7B502BA659,243F6A8885A308D313198A2E03707344A4093822299F31D0082EFA98EC4E6C89,2A298DACAE57395A15D0795DDBFD1DCB564DA82B0F269BC70A74F8220429BA1DFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEBAAEDCE6AF48A03BBFD25E8CD0364141,FALSE,"sig[32:64] is equal to curve order"
0,0000000000000000000000000000000000000000000000000000000000000001,79BE667EF9DCBBAC55A06295CE870B07029BFCDB2DCE28D959F2815B16F81798,0000000000000000000000000000000000000000000000000000000000000000,787A848E71043D280C50470E8E1532B2DD5D20EE912A45DBDD2BD1DFBF187EF6166FCCEE14F021B31AF22A90D0639CC010C2B764C304A8FFF266ABBC01A0A880,TRUE,
1,B7E151628AED2A6ABF7158809CF4F3C762E7160F38B4DA56A784D9045190CFEF,DFF1D77F2A671C5F36183726DB2341BE58FEAE1DA2DECED843240F7B502BA659,243F6A8885A308D313198A2E03707344A4093822299F31D0082EFA98EC4E6C89,3C4D3ADB1F05C3E948216ECB6007D1534D97D35D5589EDB226AD0370C0293C780AEA9BA361509DA2FDF7BC6E5E38926E40B6ACCD24EA9E06B9DA8244A1D0B691,TRUE,
2,C90FDAA22168C234C4C6628B80DC1CD129024E088A67CC74020BBEA63B14E5C7,FAC2114C2FBB091527EB7C64ECB11F8021CB45E8E7809D3C0938E4B8C0E5F84B,5E2D58D8B3BCDF1ABADEC7829054F90DDA9805AAB56C77333024B9D0A508B75C,33380A613013115518CD6030ABC8220B2DED273FD3ABD13DF0882DC6A928E5AFAC72DF3248F8FAC522EF1A819EE5EE5BEA81D92D0E19A6FAB228E5D1D61BF833,TRUE,
3,0B432B2677937381AEF05BB02A66ECD012773062CF3FA2549E44F58ED2401710,25D1DFF95105F5253C4022F628A996AD3A0D95FBF21D468A1B33F8C160D8F517,FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF,7C4E8B0C2575A77A01AF41EE6678EF9C41F97CC4D15FF6D6CA45D73BC6FF7FF4919D246589AF2FA6306F4B7A392857E9C4A17CB21DBE72C38A48C99979EEDCB8,TRUE,test fails if msg is reduced modulo p or n
4,,D69C3509BB99E412E68B0FE8544E72837DFA30746D8BE2AA65975F29D22DC7B9,4DF3C3F68FCC83B27E9D42C90431A72499F17875C81A599B566C9889B9696703,00000000000000000000003B78CE563F89A0ED9414F5AA28AD0D96D6795F9C63F84A709CFFD89AD94FCBD808D41BD26BF62F263AA253527134DDC4A4715BF491,TRUE,
5,,EEFDEA4CDB677750A420FEE807EACF21EB9898AE79B9768766E4FAA04A2D4A34,243F6A8885A308D313198A2E03707344A4093822299F31D0082EFA98EC4E6C89,3C4D3ADB1F05C3E948216ECB6007D1534D97D35D5589EDB226AD0370C0293C780AEA9BA361509DA2FDF7BC6E5E38926E40B6ACCD24EA9E06B9DA8244A1D0B691,FALSE,public key not on the curve
6,,DFF1D77F2A671C5F36183726DB2341BE58FEAE1DA2DECED843240F7B502BA659,243F6A8885A308D313198A2E03707344A4093822299F31D0082EFA98EC4E6C89,F9308A019258C31049344F85F89D5229B531C845836F99B08601F113BCE036F98631F4EF21D5F231A1000ED069E0348ED057EDF4FB1B6672009EDE9DBB2DEE14,FALSE,incorrect R residuosity
7,,DFF1D77F2A671C5F36183726DB2341BE58FEAE1DA2DECED843240F7B502BA659,243F6A8885A308D313198A2E03707344A4093822299F31D0082EFA98EC4E6C89,07636CBE3092D11AFCA4DD1D32E50F039EB5FF5FB2AB72A7DC2BA0F3A4E7ED418C312ED6ABF6A41446D28789DF4AA43A15E166F001D072536ADC6E49C21DC419,FALSE,negated message
8,,DFF1D77F2A671C5F36183726DB2341BE58FEAE1DA2DECED843240F7B502BA659,243F6A8885A308D313198A2E03707344A4093822299F31D0082EFA98EC4E6C89,3C4D3ADB1F05C3E948216ECB6007D1534D97D35D5589EDB226AD0370C0293C78F515645C9EAF625D02084391A1C76D9079F830198A5E023505F7DC482E658AB0,FALSE,negated s value
9,,DFF1D77F2A671C5F36183726DB2341BE58FEAE1DA2DECED843240F7B502BA659,243F6A8885A308D313198A2E03707344A4093822299F31D0082EFA98EC4E6C89,0000000000000000000000000000000000000000000000000000000000000000221A96FEEBA7AD29F11B675DB394948A83A220FD8FE181A7667BDBEE178011B1,FALSE,sG - eP is infinite. Test fails in single verification if jacobi(y(inf)) is defined as 1 and x(inf) as 0
10,,DFF1D77F2A671C5F36183726DB2341BE58FEAE1DA2DECED843240F7B502BA659,243F6A8885A308D313198A2E03707344A4093822299F31D0082EFA98EC4E6C89,00000000000000000000000000000000000000000000000000000000000000011A39648F31350D8E591106B43B9EB364F8617BCD52DC96A3FA8C4E50347F31DE,FALSE,sG - eP is infinite. Test fails in single verification if jacobi(y(inf)) is defined as 1 and x(inf) as 1
11,,DFF1D77F2A671C5F36183726DB2341BE58FEAE1DA2DECED843240F7B502BA659,243F6A8885A308D313198A2E03707344A4093822299F31D0082EFA98EC4E6C89,4A298DACAE57395A15D0795DDBFD1DCB564DA82B0F269BC70A74F8220429BA1D0AEA9BA361509DA2FDF7BC6E5E38926E40B6ACCD24EA9E06B9DA8244A1D0B691,FALSE,sig[0:32] is not an X coordinate on the curve
12,,DFF1D77F2A671C5F36183726DB2341BE58FEAE1DA2DECED843240F7B502BA659,243F6A8885A308D313198A2E03707344A4093822299F31D0082EFA98EC4E6C89,FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEFFFFFC2F0AEA9BA361509DA2FDF7BC6E5E38926E40B6ACCD24EA9E06B9DA8244A1D0B691,FALSE,sig[0:32] is equal to field size
13,,DFF1D77F2A671C5F36183726DB2341BE58FEAE1DA2DECED843240F7B502BA659,243F6A8885A308D313198A2E03707344A4093822299F31D0082EFA98EC4E6C89,3C4D3ADB1F05C3E948216ECB6007D1534D97D35D5589EDB226AD0370C0293C78FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEBAAEDCE6AF48A03BBFD25E8CD0364141,FALSE,sig[32:64] is equal to curve order

1 index secret key public key message signature verification result comment
2 1 0 0000000000000000000000000000000000000000000000000000000000000001 0279BE667EF9DCBBAC55A06295CE870B07029BFCDB2DCE28D959F2815B16F81798 79BE667EF9DCBBAC55A06295CE870B07029BFCDB2DCE28D959F2815B16F81798 0000000000000000000000000000000000000000000000000000000000000000 787A848E71043D280C50470E8E1532B2DD5D20EE912A45DBDD2BD1DFBF187EF67031A98831859DC34DFFEEDDA86831842CCD0079E1F92AF177F7F22CC1DCED05 787A848E71043D280C50470E8E1532B2DD5D20EE912A45DBDD2BD1DFBF187EF6166FCCEE14F021B31AF22A90D0639CC010C2B764C304A8FFF266ABBC01A0A880 TRUE
3 2 1 B7E151628AED2A6ABF7158809CF4F3C762E7160F38B4DA56A784D9045190CFEF 02DFF1D77F2A671C5F36183726DB2341BE58FEAE1DA2DECED843240F7B502BA659 DFF1D77F2A671C5F36183726DB2341BE58FEAE1DA2DECED843240F7B502BA659 243F6A8885A308D313198A2E03707344A4093822299F31D0082EFA98EC4E6C89 2A298DACAE57395A15D0795DDBFD1DCB564DA82B0F269BC70A74F8220429BA1D1E51A22CCEC35599B8F266912281F8365FFC2D035A230434A1A64DC59F7013FD 3C4D3ADB1F05C3E948216ECB6007D1534D97D35D5589EDB226AD0370C0293C780AEA9BA361509DA2FDF7BC6E5E38926E40B6ACCD24EA9E06B9DA8244A1D0B691 TRUE
4 3 2 C90FDAA22168C234C4C6628B80DC1CD129024E088A67CC74020BBEA63B14E5C7 03FAC2114C2FBB091527EB7C64ECB11F8021CB45E8E7809D3C0938E4B8C0E5F84B FAC2114C2FBB091527EB7C64ECB11F8021CB45E8E7809D3C0938E4B8C0E5F84B 5E2D58D8B3BCDF1ABADEC7829054F90DDA9805AAB56C77333024B9D0A508B75C 00DA9B08172A9B6F0466A2DEFD817F2D7AB437E0D253CB5395A963866B3574BE00880371D01766935B92D2AB4CD5C8A2A5837EC57FED7660773A05F0DE142380 33380A613013115518CD6030ABC8220B2DED273FD3ABD13DF0882DC6A928E5AFAC72DF3248F8FAC522EF1A819EE5EE5BEA81D92D0E19A6FAB228E5D1D61BF833 TRUE
5 4 3 0B432B2677937381AEF05BB02A66ECD012773062CF3FA2549E44F58ED2401710 03DEFDEA4CDB677750A420FEE807EACF21EB9898AE79B9768766E4FAA04A2D4A34 25D1DFF95105F5253C4022F628A996AD3A0D95FBF21D468A1B33F8C160D8F517 4DF3C3F68FCC83B27E9D42C90431A72499F17875C81A599B566C9889B9696703 FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF 00000000000000000000003B78CE563F89A0ED9414F5AA28AD0D96D6795F9C6302A8DC32E64E86A333F20EF56EAC9BA30B7246D6D25E22ADB8C6BE1AEB08D49D 7C4E8B0C2575A77A01AF41EE6678EF9C41F97CC4D15FF6D6CA45D73BC6FF7FF4919D246589AF2FA6306F4B7A392857E9C4A17CB21DBE72C38A48C99979EEDCB8 TRUE test fails if msg is reduced modulo p or n
6 5 4 031B84C5567B126440995D3ED5AABA0565D71E1834604819FF9C17F5E9D5DD078F D69C3509BB99E412E68B0FE8544E72837DFA30746D8BE2AA65975F29D22DC7B9 0000000000000000000000000000000000000000000000000000000000000000 4DF3C3F68FCC83B27E9D42C90431A72499F17875C81A599B566C9889B9696703 52818579ACA59767E3291D91B76B637BEF062083284992F2D95F564CA6CB4E3530B1DA849C8E8304ADC0CFE870660334B3CFC18E825EF1DB34CFAE3DFC5D8187 00000000000000000000003B78CE563F89A0ED9414F5AA28AD0D96D6795F9C63F84A709CFFD89AD94FCBD808D41BD26BF62F263AA253527134DDC4A4715BF491 TRUE test fails if jacobi symbol of x(R) instead of y(R) is used
7 6 5 03FAC2114C2FBB091527EB7C64ECB11F8021CB45E8E7809D3C0938E4B8C0E5F84B EEFDEA4CDB677750A420FEE807EACF21EB9898AE79B9768766E4FAA04A2D4A34 FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF 243F6A8885A308D313198A2E03707344A4093822299F31D0082EFA98EC4E6C89 570DD4CA83D4E6317B8EE6BAE83467A1BF419D0767122DE409394414B05080DCE9EE5F237CBD108EABAE1E37759AE47F8E4203DA3532EB28DB860F33D62D49BD 3C4D3ADB1F05C3E948216ECB6007D1534D97D35D5589EDB226AD0370C0293C780AEA9BA361509DA2FDF7BC6E5E38926E40B6ACCD24EA9E06B9DA8244A1D0B691 TRUE FALSE test fails if msg is reduced modulo p or n public key not on the curve
8 7 6 03EEFDEA4CDB677750A420FEE807EACF21EB9898AE79B9768766E4FAA04A2D4A34 DFF1D77F2A671C5F36183726DB2341BE58FEAE1DA2DECED843240F7B502BA659 4DF3C3F68FCC83B27E9D42C90431A72499F17875C81A599B566C9889B9696703 243F6A8885A308D313198A2E03707344A4093822299F31D0082EFA98EC4E6C89 00000000000000000000003B78CE563F89A0ED9414F5AA28AD0D96D6795F9C6302A8DC32E64E86A333F20EF56EAC9BA30B7246D6D25E22ADB8C6BE1AEB08D49D F9308A019258C31049344F85F89D5229B531C845836F99B08601F113BCE036F98631F4EF21D5F231A1000ED069E0348ED057EDF4FB1B6672009EDE9DBB2DEE14 FALSE public key not on the curve incorrect R residuosity
9 8 7 02DFF1D77F2A671C5F36183726DB2341BE58FEAE1DA2DECED843240F7B502BA659 DFF1D77F2A671C5F36183726DB2341BE58FEAE1DA2DECED843240F7B502BA659 243F6A8885A308D313198A2E03707344A4093822299F31D0082EFA98EC4E6C89 2A298DACAE57395A15D0795DDBFD1DCB564DA82B0F269BC70A74F8220429BA1DFA16AEE06609280A19B67A24E1977E4697712B5FD2943914ECD5F730901B4AB7 07636CBE3092D11AFCA4DD1D32E50F039EB5FF5FB2AB72A7DC2BA0F3A4E7ED418C312ED6ABF6A41446D28789DF4AA43A15E166F001D072536ADC6E49C21DC419 FALSE incorrect R residuosity negated message
10 9 8 03FAC2114C2FBB091527EB7C64ECB11F8021CB45E8E7809D3C0938E4B8C0E5F84B DFF1D77F2A671C5F36183726DB2341BE58FEAE1DA2DECED843240F7B502BA659 5E2D58D8B3BCDF1ABADEC7829054F90DDA9805AAB56C77333024B9D0A508B75C 243F6A8885A308D313198A2E03707344A4093822299F31D0082EFA98EC4E6C89 00DA9B08172A9B6F0466A2DEFD817F2D7AB437E0D253CB5395A963866B3574BED092F9D860F1776A1F7412AD8A1EB50DACCC222BC8C0E26B2056DF2F273EFDEC 3C4D3ADB1F05C3E948216ECB6007D1534D97D35D5589EDB226AD0370C0293C78F515645C9EAF625D02084391A1C76D9079F830198A5E023505F7DC482E658AB0 FALSE negated message negated s value
11 10 9 0279BE667EF9DCBBAC55A06295CE870B07029BFCDB2DCE28D959F2815B16F81798 DFF1D77F2A671C5F36183726DB2341BE58FEAE1DA2DECED843240F7B502BA659 0000000000000000000000000000000000000000000000000000000000000000 243F6A8885A308D313198A2E03707344A4093822299F31D0082EFA98EC4E6C89 787A848E71043D280C50470E8E1532B2DD5D20EE912A45DBDD2BD1DFBF187EF68FCE5677CE7A623CB20011225797CE7A8DE1DC6CCD4F754A47DA6C600E59543C 0000000000000000000000000000000000000000000000000000000000000000221A96FEEBA7AD29F11B675DB394948A83A220FD8FE181A7667BDBEE178011B1 FALSE negated s value sG - eP is infinite. Test fails in single verification if jacobi(y(inf)) is defined as 1 and x(inf) as 0
12 11 10 03DFF1D77F2A671C5F36183726DB2341BE58FEAE1DA2DECED843240F7B502BA659 DFF1D77F2A671C5F36183726DB2341BE58FEAE1DA2DECED843240F7B502BA659 243F6A8885A308D313198A2E03707344A4093822299F31D0082EFA98EC4E6C89 2A298DACAE57395A15D0795DDBFD1DCB564DA82B0F269BC70A74F8220429BA1D1E51A22CCEC35599B8F266912281F8365FFC2D035A230434A1A64DC59F7013FD 00000000000000000000000000000000000000000000000000000000000000011A39648F31350D8E591106B43B9EB364F8617BCD52DC96A3FA8C4E50347F31DE FALSE negated public key sG - eP is infinite. Test fails in single verification if jacobi(y(inf)) is defined as 1 and x(inf) as 1
13 12 11 02DFF1D77F2A671C5F36183726DB2341BE58FEAE1DA2DECED843240F7B502BA659 DFF1D77F2A671C5F36183726DB2341BE58FEAE1DA2DECED843240F7B502BA659 243F6A8885A308D313198A2E03707344A4093822299F31D0082EFA98EC4E6C89 00000000000000000000000000000000000000000000000000000000000000009E9D01AF988B5CEDCE47221BFA9B222721F3FA408915444A4B489021DB55775F 4A298DACAE57395A15D0795DDBFD1DCB564DA82B0F269BC70A74F8220429BA1D0AEA9BA361509DA2FDF7BC6E5E38926E40B6ACCD24EA9E06B9DA8244A1D0B691 FALSE sG - eP is infinite. Test fails in single verification if jacobi(y(inf)) is defined as 1 and x(inf) as 0 sig[0:32] is not an X coordinate on the curve
14 13 12 02DFF1D77F2A671C5F36183726DB2341BE58FEAE1DA2DECED843240F7B502BA659 DFF1D77F2A671C5F36183726DB2341BE58FEAE1DA2DECED843240F7B502BA659 243F6A8885A308D313198A2E03707344A4093822299F31D0082EFA98EC4E6C89 0000000000000000000000000000000000000000000000000000000000000001D37DDF0254351836D84B1BD6A795FD5D523048F298C4214D187FE4892947F728 FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEFFFFFC2F0AEA9BA361509DA2FDF7BC6E5E38926E40B6ACCD24EA9E06B9DA8244A1D0B691 FALSE sG - eP is infinite. Test fails in single verification if jacobi(y(inf)) is defined as 1 and x(inf) as 1 sig[0:32] is equal to field size
15 14 13 02DFF1D77F2A671C5F36183726DB2341BE58FEAE1DA2DECED843240F7B502BA659 DFF1D77F2A671C5F36183726DB2341BE58FEAE1DA2DECED843240F7B502BA659 243F6A8885A308D313198A2E03707344A4093822299F31D0082EFA98EC4E6C89 4A298DACAE57395A15D0795DDBFD1DCB564DA82B0F269BC70A74F8220429BA1D1E51A22CCEC35599B8F266912281F8365FFC2D035A230434A1A64DC59F7013FD 3C4D3ADB1F05C3E948216ECB6007D1534D97D35D5589EDB226AD0370C0293C78FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEBAAEDCE6AF48A03BBFD25E8CD0364141 FALSE sig[0:32] is not an X coordinate on the curve sig[32:64] is equal to curve order
15 02DFF1D77F2A671C5F36183726DB2341BE58FEAE1DA2DECED843240F7B502BA659 243F6A8885A308D313198A2E03707344A4093822299F31D0082EFA98EC4E6C89 FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFC2F1E51A22CCEC35599B8F266912281F8365FFC2D035A230434A1A64DC59F7013FD FALSE sig[0:32] is equal to field size
16 02DFF1D77F2A671C5F36183726DB2341BE58FEAE1DA2DECED843240F7B502BA659 243F6A8885A308D313198A2E03707344A4093822299F31D0082EFA98EC4E6C89 2A298DACAE57395A15D0795DDBFD1DCB564DA82B0F269BC70A74F8220429BA1DFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEBAAEDCE6AF48A03BBFD25E8CD0364141 FALSE sig[32:64] is equal to curve order

215
bip-schnorr/test-vectors.py Normal file
View file

@ -0,0 +1,215 @@
import sys
from reference import *
def vector0():
seckey = 1
msg = bytes_from_int(0)
sig = schnorr_sign(msg, seckey)
pubkey = pubkey_gen(seckey)
# The point reconstructed from the public key has an even Y coordinate.
pubkey_point = point_from_bytes(pubkey)
assert(pubkey_point[1] & 1 == 0)
return (bytes_from_int(seckey), pubkey, msg, sig, "TRUE", None)
def vector1():
seckey = 0xB7E151628AED2A6ABF7158809CF4F3C762E7160F38B4DA56A784D9045190CFEF
msg = bytes_from_int(0x243F6A8885A308D313198A2E03707344A4093822299F31D0082EFA98EC4E6C89)
sig = schnorr_sign(msg, seckey)
pubkey = pubkey_gen(seckey)
# The point reconstructed from the public key has an odd Y coordinate.
pubkey_point = point_from_bytes(pubkey)
assert(pubkey_point[1] & 1 == 1)
return (bytes_from_int(seckey), pubkey, msg, sig, "TRUE", None)
def vector2():
seckey = 0xC90FDAA22168C234C4C6628B80DC1CD129024E088A67CC74020BBEA63B14E5C7
msg = bytes_from_int(0x5E2D58D8B3BCDF1ABADEC7829054F90DDA9805AAB56C77333024B9D0A508B75C)
sig = schnorr_sign(msg, seckey)
# This signature does not verify vector if the implementer would check the
# jacobi symbol of the X coordinate of R instead of the Y coordinate.
R = point_from_bytes(sig[0:32])
assert(jacobi(R[0]) != 1)
return (bytes_from_int(seckey), pubkey_gen(seckey), msg, sig, "TRUE", None)
def vector3():
seckey = 0x0B432B2677937381AEF05BB02A66ECD012773062CF3FA2549E44F58ED2401710
msg = bytes_from_int(0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF)
sig = schnorr_sign(msg, seckey)
return (bytes_from_int(seckey), pubkey_gen(seckey), msg, sig, "TRUE", "test fails if msg is reduced modulo p or n")
# Signs with a given nonce. Results in an invalid signature if y(kG) is not a
# quadratic residue.
def schnorr_sign_fixed_nonce(msg, seckey0, k):
if len(msg) != 32:
raise ValueError('The message must be a 32-byte array.')
if not (1 <= seckey0 <= n - 1):
raise ValueError('The secret key must be an integer in the range 1..n-1.')
P = point_mul(G, seckey0)
seckey = seckey0 if (jacobi(P[1]) == 1) else n - seckey0
R = point_mul(G, k)
e = int_from_bytes(hash_sha256(bytes_from_point(R) + bytes_from_point(P) + msg)) % n
return bytes_from_point(R) + bytes_from_int((k + e * seckey) % n)
# Creates a singature with a small x(R) by using k = 1/2
def vector4():
one_half = 0x7fffffffffffffffffffffffffffffff5d576e7357a4501ddfe92f46681b20a0
seckey = 0x763758E5CBEEDEE4F7D3FC86F531C36578933228998226672F13C4F0EBE855EB
msg = bytes_from_int(0x4DF3C3F68FCC83B27E9D42C90431A72499F17875C81A599B566C9889B9696703)
sig = schnorr_sign_fixed_nonce(msg, seckey, one_half)
return (None, pubkey_gen(seckey), msg, sig, "TRUE", None)
default_seckey = 0xB7E151628AED2A6ABF7158809CF4F3C762E7160F38B4DA56A784D9045190CFEF
default_msg = bytes_from_int(0x243F6A8885A308D313198A2E03707344A4093822299F31D0082EFA98EC4E6C89)
def vector5():
seckey = default_seckey
msg = default_msg
sig = schnorr_sign(msg, seckey)
# Public key is not on the curve
pubkey = bytes_from_int(0xEEFDEA4CDB677750A420FEE807EACF21EB9898AE79B9768766E4FAA04A2D4A34)
assert(point_from_bytes(pubkey) is None)
return (None, pubkey, msg, sig, "FALSE", "public key not on the curve")
def vector6():
seckey = default_seckey
msg = default_msg
k = 3
sig = schnorr_sign_fixed_nonce(msg, seckey, k)
# Y coordinate of R is not a quadratic residue
R = point_mul(G, k)
assert(jacobi(R[1]) != 1)
return (None, pubkey_gen(seckey), msg, sig, "FALSE", "incorrect R residuosity")
def vector7():
seckey = default_seckey
msg = int_from_bytes(default_msg)
neg_msg = bytes_from_int(n - msg)
sig = schnorr_sign(neg_msg, seckey)
return (None, pubkey_gen(seckey), bytes_from_int(msg), sig, "FALSE", "negated message")
def vector8():
seckey = default_seckey
msg = default_msg
sig = schnorr_sign(msg, seckey)
sig = sig[0:32] + bytes_from_int(n - int_from_bytes(sig[32:64]))
return (None, pubkey_gen(seckey), msg, sig, "FALSE", "negated s value")
def bytes_from_point_inf0(P):
if P == None:
return bytes_from_int(0)
return bytes_from_int(P[0])
def vector9():
seckey = default_seckey
msg = default_msg
# Override bytes_from_point in schnorr_sign to allow creating a signature
# with k = 0.
k = 0
bytes_from_point_tmp = bytes_from_point.__code__
bytes_from_point.__code__ = bytes_from_point_inf0.__code__
sig = schnorr_sign_fixed_nonce(msg, seckey, k)
bytes_from_point.__code__ = bytes_from_point_tmp
return (None, pubkey_gen(seckey), msg, sig, "FALSE", "sG - eP is infinite. Test fails in single verification if jacobi(y(inf)) is defined as 1 and x(inf) as 0")
def bytes_from_point_inf1(P):
if P == None:
return bytes_from_int(1)
return bytes_from_int(P[0])
def vector10():
seckey = default_seckey
msg = default_msg
# Override bytes_from_point in schnorr_sign to allow creating a signature
# with k = 0.
k = 0
bytes_from_point_tmp = bytes_from_point.__code__
bytes_from_point.__code__ = bytes_from_point_inf1.__code__
sig = schnorr_sign_fixed_nonce(msg, seckey, k)
bytes_from_point.__code__ = bytes_from_point_tmp
return (None, pubkey_gen(seckey), msg, sig, "FALSE", "sG - eP is infinite. Test fails in single verification if jacobi(y(inf)) is defined as 1 and x(inf) as 1")
# It's cryptographically impossible to create a test vector that fails if run
# in an implementation which merely misses the check that sig[0:32] is an X
# coordinate on the curve. This test vector just increases test coverage.
def vector11():
seckey = default_seckey
msg = default_msg
sig = schnorr_sign(msg, seckey)
# Replace R's X coordinate with an X coordinate that's not on the curve
x_not_on_curve = bytes_from_int(0x4A298DACAE57395A15D0795DDBFD1DCB564DA82B0F269BC70A74F8220429BA1D)
assert(point_from_bytes(x_not_on_curve) is None)
sig = x_not_on_curve + sig[32:64]
return (None, pubkey_gen(seckey), msg, sig, "FALSE", "sig[0:32] is not an X coordinate on the curve")
# It's cryptographically impossible to create a test vector that fails if run
# in an implementation which merely misses the check that sig[0:32] is smaller
# than the field size. This test vector just increases test coverage.
def vector12():
seckey = default_seckey
msg = default_msg
sig = schnorr_sign(msg, seckey)
# Replace R's X coordinate with an X coordinate that's equal to field size
sig = bytes_from_int(p) + sig[32:64]
return (None, pubkey_gen(seckey), msg, sig, "FALSE", "sig[0:32] is equal to field size")
# It's cryptographically impossible to create a test vector that fails if run
# in an implementation which merely misses the check that sig[32:64] is smaller
# than the curve order. This test vector just increases test coverage.
def vector13():
seckey = default_seckey
msg = default_msg
sig = schnorr_sign(msg, seckey)
# Replace s with a number that's equal to the curve order
sig = sig[0:32] + bytes_from_int(n)
return (None, pubkey_gen(seckey), msg, sig, "FALSE", "sig[32:64] is equal to curve order")
vectors = [
vector0(),
vector1(),
vector2(),
vector3(),
vector4(),
vector5(),
vector6(),
vector7(),
vector8(),
vector9(),
vector10(),
vector11(),
vector12(),
vector13(),
]
# Converts the byte strings of a test vector into hex strings
def bytes_to_hex(seckey, pubkey, msg, sig, result, comment):
return (seckey.hex().upper() if seckey is not None else None, pubkey.hex().upper(), msg.hex().upper(), sig.hex().upper(), result, comment)
vectors = list(map(lambda vector: bytes_to_hex(vector[0], vector[1], vector[2], vector[3], vector[4], vector[5]), vectors))
def print_csv(vectors):
writer = csv.writer(sys.stdout)
writer.writerow(("index", "secret key", "public key", "message", "signature", "verification result", "comment"))
for (i,v) in enumerate(vectors):
writer.writerow((i,)+v)
print_csv(vectors)