mirror of
https://github.com/bitcoin/bips.git
synced 2025-01-18 21:35:13 +01:00
Merge pull request #206 from jonasnick/some-fixups
BIP-0340: Miscellaneous fixups
This commit is contained in:
commit
e331aadf92
@ -64,7 +64,7 @@ Since we would like to avoid the fragility that comes with short hashes, the ''e
|
||||
|
||||
'''Key prefixing''' Using the verification rule above directly makes Schnorr signatures vulnerable to "related-key attacks" in which a third party can convert a signature ''(R, s)'' for public key ''P'' into a signature ''(R, s + a⋅hash(R || m))'' for public key ''P + a⋅G'' and the same message ''m'', for any given additive tweak ''a'' to the signing key. This would render signatures insecure when keys are generated using [[bip-0032.mediawiki#public-parent-key--public-child-key|BIP32's unhardened derivation]] and other methods that rely on additive tweaks to existing keys such as Taproot.
|
||||
|
||||
To protect against these attacks, we choose ''key prefixed''<ref>A limitation of committing to the public key (rather than to a short hash of it, or not at all) is that it removes the ability for public key recovery or verifying signatures against a short public key hash. These constructions are generally incompatible with batch verification.</ref> Schnorr signatures; changing the equation to ''s⋅G = R + hash(R || P || m)⋅P''. [https://eprint.iacr.org/2015/1135.pdf It can be shown] that key prefixing protects against related-key attacks with additive tweaks. In general, key prefixing increases robustness in multi-user settings, e.g., it seems to be a requirement for proving the MuSig multisignature scheme secure (see Applications below).
|
||||
To protect against these attacks, we choose ''key prefixed''<ref>A limitation of committing to the public key (rather than to a short hash of it, or not at all) is that it removes the ability for public key recovery or verifying signatures against a short public key hash. These constructions are generally incompatible with batch verification.</ref> Schnorr signatures which means that the public key is prefixed to the message in the challenge hash input. This changes the equation to ''s⋅G = R + hash(R || P || m)⋅P''. [https://eprint.iacr.org/2015/1135.pdf It can be shown] that key prefixing protects against related-key attacks with additive tweaks. In general, key prefixing increases robustness in multi-user settings, e.g., it seems to be a requirement for proving the MuSig multisignature scheme secure (see Applications below).
|
||||
|
||||
We note that key prefixing is not strictly necessary for transaction signatures as used in Bitcoin currently, because signed transactions indirectly commit to the public keys already, i.e., ''m'' contains a commitment to ''pk''. However, this indirect commitment should not be relied upon because it may change with proposals such as SIGHASH_NOINPUT ([[bip-0118.mediawiki|BIP118]]), and would render the signature scheme unsuitable for other purposes than signing transactions, e.g., [https://bitcoin.org/en/developer-reference#signmessage signing ordinary messages].
|
||||
|
||||
@ -85,7 +85,7 @@ In the case of ''R'' the third option is slower at signing time but a bit faster
|
||||
for elliptic curve operations). The two other options require a possibly
|
||||
expensive conversion to affine coordinates first. This would even be the case if the sign or oddness were explicitly coded (option 2 in the list above). We therefore choose option 3.
|
||||
|
||||
For ''P'', using the third option comes at the cost of computing a Jacobi symbol (test for squaredness) at key generation or signing time, without avoiding a conversion to affine coordinates (as public keys will use affine coordinates anyway). We choose the second option, making public keys implicitly have an even Y coordinate, to maximize compatibility with existing key generation algorithms and infrastructure.
|
||||
For ''P'', using the third option comes at the cost of computing whether the Y coordinate is square at key generation or signing time, without avoiding a conversion to affine coordinates (as public keys will use affine coordinates anyway). We choose the second option, making public keys implicitly have an even Y coordinate, to maximize compatibility with existing key generation algorithms and infrastructure.
|
||||
|
||||
Despite halving the size of the set of valid public keys, implicit Y coordinates are not a reduction in security. Informally, if a fast algorithm existed to compute the discrete logarithm of an X-only public key, then it could also be used to compute the discrete logarithm of a full public key: apply it to the X coordinate, and then optionally negate the result. This shows that breaking an X-only public key can be at most a small constant term faster than breaking a full one.<ref>This can be formalized by a simple reduction that reduces an attack on Schnorr signatures with implicit Y coordinates to an attack to Schnorr signatures with explicit Y coordinates. The reduction works by reencoding public keys and negating the result of the hash function, which is modeled as random oracle, whenever the challenge public key has an explicit Y coordinate that is odd. A proof sketch can be found [https://medium.com/blockstream/reducing-bitcoin-transaction-sizes-with-x-only-pubkeys-f86476af05d7 here].</ref>.
|
||||
|
||||
@ -99,7 +99,7 @@ This proposal suggests to include the tag by prefixing the hashed data with ''SH
|
||||
|
||||
=== Specification ===
|
||||
|
||||
The following conventions are used, with constants as defined for [https://www.secg.org/sec2-v2.pdf secp256k1]:
|
||||
The following conventions are used, with constants as defined for [https://www.secg.org/sec2-v2.pdf secp256k1]. We note that adapting this specification to other elliptic curves is not straightforward and can result in an insecure scheme<ref>Among other pitfalls, using the specification with a curve whose order is not close to the size of the range of the nonce derivation function is insecure.</ref>.
|
||||
* Lowercase variables represent integers or byte arrays.
|
||||
** The constant ''p'' refers to the field size, ''0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEFFFFFC2F''.
|
||||
** The constant ''n'' refers to the curve order, ''0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEBAAEDCE6AF48A03BBFD25E8CD0364141''.
|
||||
@ -111,13 +111,13 @@ The following conventions are used, with constants as defined for [https://www.s
|
||||
** [https://en.wikipedia.org/wiki/Elliptic_curve_point_multiplication Multiplication (⋅) of an integer and a point] refers to the repeated application of the group operation.
|
||||
* Functions and operations:
|
||||
** ''||'' refers to byte array concatenation.
|
||||
** The function ''x[i:j]'', where ''x'' is a byte array, returns a ''(j - i)''-byte array with a copy of the ''i''-th byte (inclusive) to the ''j''-th byte (exclusive) of ''x''.
|
||||
** The function ''x[i:j]'', where ''x'' is a byte array and ''i, j ≥ 0'', returns a ''(j - i)''-byte array with a copy of the ''i''-th byte (inclusive) to the ''j''-th byte (exclusive) of ''x''.
|
||||
** The function ''bytes(x)'', where ''x'' is an integer, returns the 32-byte encoding of ''x'', most significant byte first.
|
||||
** The function ''bytes(P)'', where ''P'' is a point, returns ''bytes(x(P))''.
|
||||
** The function ''int(x)'', where ''x'' is a 32-byte array, returns the 256-bit unsigned integer whose most significant byte first encoding is ''x''.
|
||||
** The function ''is_square(x)'', where ''x'' is an integer, returns whether or not ''x'' is a quadratic residue modulo ''p''. Since ''p'' is prime, it is equivalent to the [https://en.wikipedia.org/wiki/Legendre_symbol Legendre symbol] ''(x / p) = x<sup>(p-1)/2</sup> mod p'' being equal to ''1''<ref>For points ''P'' on the secp256k1 curve it holds that ''y(P)<sup>(p-1)/2</sup> ≠ 0 mod p''.</ref>.
|
||||
** The function ''has_square_y(P)'', where ''P'' is a point, is defined as ''not is_infinite(P) and is_square(y(P))''<ref>For points ''P'' on the secp256k1 curve it holds that ''has_square_y(P) = not has_square_y(-P)''.</ref>.
|
||||
** The function ''has_even_y(x)'', where ''P'' is a point, returns ''y(P) mod 2 = 0''.
|
||||
** The function ''has_even_y(P)'', where ''P'' is a point, returns ''y(P) mod 2 = 0''.
|
||||
** The function ''lift_x_square_y(x)'', where ''x'' is an integer in range ''0..p-1'', returns the point ''P'' for which ''x(P) = x''<ref>
|
||||
Given a candidate X coordinate ''x'' in the range ''0..p-1'', there exist either exactly two or exactly zero valid Y coordinates. If no valid Y coordinate exists, then ''x'' is not a valid X coordinate either, i.e., no point ''P'' exists for which ''x(P) = x''. The valid Y coordinates for a given candidate ''x'' are the square roots of ''c = x<sup>3</sup> + 7 mod p'' and they can be computed as ''y = ±c<sup>(p+1)/4</sup> mod p'' (see [https://en.wikipedia.org/wiki/Quadratic_residue#Prime_or_prime_power_modulus Quadratic residue]) if they exist, which can be checked by squaring and comparing with ''c''.
|
||||
</ref> and ''has_square_y(P)''<ref>
|
||||
@ -242,7 +242,7 @@ While recent academic papers claim that they are also possible with ECDSA, conse
|
||||
|
||||
By means of an interactive scheme such as [https://eprint.iacr.org/2018/068 MuSig], participants can aggregate their public keys into a single public key which they can jointly sign for. This allows ''n''-of-''n'' multisignatures which, from a verifier's perspective, are no different from ordinary signatures, giving improved privacy and efficiency versus ''CHECKMULTISIG'' or other means.
|
||||
|
||||
Moreover, Schnorr signatures are compatible with [https://web.archive.org/web/20031003232851/http://www.research.ibm.com/security/dkg.ps distributed key generation], which enables interactive threshold signatures schemes, e.g., the schemes described by [http://cacr.uwaterloo.ca/techreports/2001/corr2001-13.ps Stinson and Strobl (2001)] or [https://web.archive.org/web/20060911151529/http://theory.lcs.mit.edu/~stasio/Papers/gjkr03.pdf Genaro, Jarecki and Krawczyk (2003)]. These protocols make it possible to realize ''k''-of-''n'' threshold signatures, which ensure that any subset of size ''k'' of the set of ''n'' signers can sign but no subset of size less than ''k'' can produce a valid Schnorr signature. However, the practicality of the existing schemes is limited: most schemes in the literature have been proven secure only for the case ''k-1 < n/2'', are not secure when used concurrently in multiple sessions, or require a reliable broadcast mechanism to be secure. Further research is necessary to improve this situation.
|
||||
Moreover, Schnorr signatures are compatible with [https://web.archive.org/web/20031003232851/http://www.research.ibm.com/security/dkg.ps distributed key generation], which enables interactive threshold signatures schemes, e.g., the schemes described by [http://cacr.uwaterloo.ca/techreports/2001/corr2001-13.ps Stinson and Strobl (2001)] or [https://web.archive.org/web/20060911151529/http://theory.lcs.mit.edu/~stasio/Papers/gjkr03.pdf Gennaro, Jarecki and Krawczyk (2003)]. These protocols make it possible to realize ''k''-of-''n'' threshold signatures, which ensure that any subset of size ''k'' of the set of ''n'' signers can sign but no subset of size less than ''k'' can produce a valid Schnorr signature. However, the practicality of the existing schemes is limited: most schemes in the literature have been proven secure only for the case ''k-1 < n/2'', are not secure when used concurrently in multiple sessions, or require a reliable broadcast mechanism to be secure. Further research is necessary to improve this situation.
|
||||
|
||||
=== Adaptor Signatures ===
|
||||
|
||||
|
Loading…
Reference in New Issue
Block a user