mirror of
https://github.com/bitcoin/bips.git
synced 2024-11-19 18:00:08 +01:00
Merge pull request #176 from sipa/201912_linear_is_easy
Linearity makes sign-for-sum-of-keys easier, not possible entirely.
This commit is contained in:
commit
cb1cec770b
@ -27,7 +27,7 @@ compared to [http://publikationen.ub.uni-frankfurt.de/opus4/files/4280/schnorr.p
|
||||
|
||||
* '''Provable security''': Schnorr signatures are provably secure. In more detail, they are ''strongly unforgeable under chosen message attack (SUF-CMA)''<ref>Informally, this means that without knowledge of the secret key but given valid signatures of arbitrary messages, it is not possible to come up with further valid signatures.</ref> [https://www.di.ens.fr/~pointche/Documents/Papers/2000_joc.pdf in the random oracle model assuming the hardness of the elliptic curve discrete logarithm problem (ECDLP)] and [http://www.neven.org/papers/schnorr.pdf in the generic group model assuming variants of preimage and second preimage resistance of the used hash function]<ref>A detailed security proof in the random oracle model, which essentially restates [https://www.di.ens.fr/~pointche/Documents/Papers/2000_joc.pdf the original security proof by Pointcheval and Stern] more explicitly, can be found in [https://eprint.iacr.org/2016/191 a paper by Kiltz, Masny and Pan]. All these security proofs assume a variant of Schnorr signatures that use ''(e,s)'' instead of ''(R,s)'' (see Design above). Since we use a unique encoding of ''R'', there is an efficiently computable bijection that maps ''(R,s)'' to ''(e,s)'', which allows to convert a successful SUF-CMA attacker for the ''(e,s)'' variant to a successful SUF-CMA attacker for the ''(R,s)'' variant (and vice-versa). Furthermore, the proofs consider a variant of Schnorr signatures without key prefixing (see Design above), but it can be verified that the proofs are also correct for the variant with key prefixing. As a result, all the aforementioned security proofs apply to the variant of Schnorr signatures proposed in this document.</ref>. In contrast, the [https://nbn-resolving.de/urn:nbn:de:hbz:294-60803 best known results for the provable security of ECDSA] rely on stronger assumptions.
|
||||
* '''Non-malleability''': The SUF-CMA security of Schnorr signatures implies that they are non-malleable. On the other hand, ECDSA signatures are inherently malleable<ref>If ''(r,s)'' is a valid ECDSA signature for a given message and key, then ''(r,n-s)'' is also valid for the same message and key. If ECDSA is restricted to only permit one of the two variants (as Bitcoin does through a policy rule on the network), it can be [https://nbn-resolving.de/urn:nbn:de:hbz:294-60803 proven] non-malleable under stronger than usual assumptions.</ref>; a third party without access to the secret key can alter an existing valid signature for a given public key and message into another signature that is valid for the same key and message. This issue is discussed in [https://github.com/bitcoin/bips/blob/master/bip-0062.mediawiki BIP62] and [https://github.com/bitcoin/bips/blob/master/bip-0146.mediawiki BIP146].
|
||||
* '''Linearity''': Schnorr signatures have the remarkable property that multiple parties can collaborate to produce a signature that is valid for the sum of their public keys. This is the building block for various higher-level constructions that improve efficiency and privacy, such as multisignatures and others (see Applications below).
|
||||
* '''Linearity''': Schnorr signatures provide a simple and efficient method that enables multiple collaborating parties to produce a signature that is valid for the sum of their public keys. This is the building block for various higher-level constructions that improve efficiency and privacy, such as multisignatures and others (see Applications below).
|
||||
|
||||
For all these advantages, there are virtually no disadvantages, apart
|
||||
from not being standardized. This document seeks to change that. As we
|
||||
|
BIN
bip-schnorr/__pycache__/reference.cpython-36.pyc
Normal file
BIN
bip-schnorr/__pycache__/reference.cpython-36.pyc
Normal file
Binary file not shown.
Loading…
Reference in New Issue
Block a user