1
0
Fork 0
mirror of https://github.com/bitcoin/bips.git synced 2025-02-24 15:36:53 +01:00

Merge pull request #210 from sipa/202008_even_r_tiebreaker

Switch BIP340 to even R tiebreaker
This commit is contained in:
Pieter Wuille 2020-08-26 15:47:38 -07:00 committed by GitHub
commit bf106b05ca
No known key found for this signature in database
GPG key ID: 4AEE18F83AFDEB23
5 changed files with 83 additions and 100 deletions

View file

@ -78,14 +78,9 @@ Using the first option would be slightly more efficient for verification (around
'''Implicit Y coordinates''' In order to support efficient verification and batch verification, the Y coordinate of ''P'' and of ''R'' cannot be ambiguous (every valid X coordinate has two possible Y coordinates). We have a choice between several options for symmetry breaking:
# Implicitly choosing the Y coordinate that is in the lower half.
# Implicitly choosing the Y coordinate that is even<ref>Since ''p'' is odd, negation modulo ''p'' will map even numbers to odd numbers and the other way around. This means that for a valid X coordinate, one of the corresponding Y coordinates will be even, and the other will be odd.</ref>.
# Implicitly choosing the Y coordinate that is a quadratic residue (has a square root modulo the field size, or "is a square" for short)<ref>A product of two numbers is a square when either both or none of the factors are squares. As ''-1'' is not a square modulo secp256k1's field size ''p'', and the two Y coordinates corresponding to a given X coordinate are each other's negation, this means exactly one of the two must be a square.</ref>.
# Implicitly choosing the Y coordinate that is a quadratic residue (i.e. has a square root modulo ''p'').
In the case of ''R'' the third option is slower at signing time but a bit faster to verify, as it is possible to directly compute whether the Y coordinate is a square when the points are represented in
[https://en.wikibooks.org/wiki/Cryptography/Prime_Curve/Jacobian_Coordinates Jacobian coordinates] (a common optimization to avoid modular inverses
for elliptic curve operations). The two other options require a possibly
expensive conversion to affine coordinates first. This would even be the case if the sign or oddness were explicitly coded (option 2 in the list above). We therefore choose option 3.
For ''P'', using the third option comes at the cost of computing whether the Y coordinate is square at key generation or signing time, without avoiding a conversion to affine coordinates (as public keys will use affine coordinates anyway). We choose the second option, making public keys implicitly have an even Y coordinate, to maximize compatibility with existing key generation algorithms and infrastructure.
The second option offers the greatest compatibility with existing key generation systems, where the standard 33-byte compressed public key format consists of a byte indicating the oddness of the Y coordinate, plus the full X coordinate. To avoid gratuitous incompatibilities, we pick that option for ''P'', and thus our X-only public keys become equivalent to a compressed public key that is the X-only key prefixed by the byte 0x02. For consistency, the same is done for ''R''<ref>An earlier version of this draft used the third option instead, based on a belief that this would in general trade signing efficiency for verification efficiency. Determining if a Y coordinate is a quadratic residue can be done by computing the Legendre symbol directly in Jacobian coordinates (a common optimization), while determining oddness needs a conversion to affine coordinates first, which needs a modular inversion. As modular inverses and Legendre symbols have similar [https://lists.linuxfoundation.org/pipermail/bitcoin-dev/2020-August/018081.html performance] in practice, this trade-off is not worth it.</ref>.
Despite halving the size of the set of valid public keys, implicit Y coordinates are not a reduction in security. Informally, if a fast algorithm existed to compute the discrete logarithm of an X-only public key, then it could also be used to compute the discrete logarithm of a full public key: apply it to the X coordinate, and then optionally negate the result. This shows that breaking an X-only public key can be at most a small constant term faster than breaking a full one.<ref>This can be formalized by a simple reduction that reduces an attack on Schnorr signatures with implicit Y coordinates to an attack to Schnorr signatures with explicit Y coordinates. The reduction works by reencoding public keys and negating the result of the hash function, which is modeled as random oracle, whenever the challenge public key has an explicit Y coordinate that is odd. A proof sketch can be found [https://medium.com/blockstream/reducing-bitcoin-transaction-sizes-with-x-only-pubkeys-f86476af05d7 here].</ref>.
@ -95,7 +90,7 @@ For example, without tagged hashing a BIP340 signature could also be valid for a
This proposal suggests to include the tag by prefixing the hashed data with ''SHA256(tag) || SHA256(tag)''. Because this is a 64-byte long context-specific constant and the ''SHA256'' block size is also 64 bytes, optimized implementations are possible (identical to SHA256 itself, but with a modified initial state). Using SHA256 of the tag name itself is reasonably simple and efficient for implementations that don't choose to use the optimization.
'''Final scheme''' As a result, our final scheme ends up using public key ''pk'' which is the X coordinate of a point ''P'' on the curve whose Y coordinate is even and signatures ''(r,s)'' where ''r'' is the X coordinate of a point ''R'' whose Y coordinate is a square. The signature satisfies ''s⋅G = R + tagged_hash(r || pk || m)⋅P''.
'''Final scheme''' As a result, our final scheme ends up using public key ''pk'' which is the X coordinate of a point ''P'' on the curve whose Y coordinate is even and signatures ''(r,s)'' where ''r'' is the X coordinate of a point ''R'' whose Y coordinate is even. The signature satisfies ''s⋅G = R + tagged_hash(r || pk || m)⋅P''.
=== Specification ===
@ -115,19 +110,13 @@ The following conventions are used, with constants as defined for [https://www.s
** The function ''bytes(x)'', where ''x'' is an integer, returns the 32-byte encoding of ''x'', most significant byte first.
** The function ''bytes(P)'', where ''P'' is a point, returns ''bytes(x(P))''.
** The function ''int(x)'', where ''x'' is a 32-byte array, returns the 256-bit unsigned integer whose most significant byte first encoding is ''x''.
** The function ''is_square(x)'', where ''x'' is an integer, returns whether or not ''x'' is a quadratic residue modulo ''p''. Since ''p'' is prime, it is equivalent to the [https://en.wikipedia.org/wiki/Legendre_symbol Legendre symbol] ''(x / p) = x<sup>(p-1)/2</sup> mod p'' being equal to ''1''<ref>For points ''P'' on the secp256k1 curve it holds that ''y(P)<sup>(p-1)/2</sup> &ne; 0 mod p''.</ref>.
** The function ''has_square_y(P)'', where ''P'' is a point, is defined as ''not is_infinite(P) and is_square(y(P))''<ref>For points ''P'' on the secp256k1 curve it holds that ''has_square_y(P) = not has_square_y(-P)''.</ref>.
** The function ''has_even_y(P)'', where ''P'' is a point, returns ''y(P) mod 2 = 0''.
** The function ''lift_x_square_y(x)'', where ''x'' is an integer in range ''0..p-1'', returns the point ''P'' for which ''x(P) = x''<ref>
Given a candidate X coordinate ''x'' in the range ''0..p-1'', there exist either exactly two or exactly zero valid Y coordinates. If no valid Y coordinate exists, then ''x'' is not a valid X coordinate either, i.e., no point ''P'' exists for which ''x(P) = x''. The valid Y coordinates for a given candidate ''x'' are the square roots of ''c = x<sup>3</sup> + 7 mod p'' and they can be computed as ''y = &plusmn;c<sup>(p+1)/4</sup> mod p'' (see [https://en.wikipedia.org/wiki/Quadratic_residue#Prime_or_prime_power_modulus Quadratic residue]) if they exist, which can be checked by squaring and comparing with ''c''.
</ref> and ''has_square_y(P)''<ref>
If ''P := lift_x_square_y(x)'' does not fail, then ''y := y(P) = c<sup>(p+1)/4</sup> mod p'' is square. Proof: If ''lift_x_square_y'' does not fail, ''y'' is a square root of ''c'' and therefore the [https://en.wikipedia.org/wiki/Legendre_symbol Legendre symbol] ''(c / p)'' is ''c<sup>(p-1)/2</sup> = 1 mod p''. Because the Legendre symbol ''(y / p)'' is ''y<sup>(p-1)/2</sup> mod p = c<sup>((p+1)/4)((p-1)/2)</sup> mod p = 1<sup>((p+1)/4)</sup> mod p = 1 mod p'', ''y'' is square.
</ref>, or fails if no such point exists. The function ''lift_x_square_y(x)'' is equivalent to the following pseudocode:
** The function ''lift_x(x)'', where ''x'' is an integer in range ''0..p-1'', returns the point ''P'' for which ''x(P) = x''<ref>
Given a candidate X coordinate ''x'' in the range ''0..p-1'', there exist either exactly two or exactly zero valid Y coordinates. If no valid Y coordinate exists, then ''x'' is not a valid X coordinate either, i.e., no point ''P'' exists for which ''x(P) = x''. The valid Y coordinates for a given candidate ''x'' are the square roots of ''c = x<sup>3</sup> + 7 mod p'' and they can be computed as ''y = &plusmn;c<sup>(p+1)/4</sup> mod p'' (see [https://en.wikipedia.org/wiki/Quadratic_residue#Prime_or_prime_power_modulus Quadratic residue]) if they exist, which can be checked by squaring and comparing with ''c''.</ref> and ''has_even_y(P)'', or fails if no such point exists. The function ''lift_x(x)'' is equivalent to the following pseudocode:
*** Let ''c = x<sup>3</sup> + 7 mod p''.
*** Let ''y = c<sup>(p+1)/4</sup> mod p''.
*** Fail if ''c &ne; y<sup>2</sup> mod p''.
*** Return the unique point ''P'' such that ''x(P) = x'' and ''y(P) = y'', or fail if no such point exists.
** The function ''lift_x_even_y(x)'', where ''x'' is an integer in range ''0..p-1'', returns the point ''P'' for which ''x(P) = x'' and ''has_even_y(P)'', or fails if no such point exists. If such a point does exist, it is always equal to either ''lift_x_square_y(x)'' or ''-lift_x_square_y(x)'', which suggests implementing it in terms of ''lift_x_square_y'', and optionally negating the result.
*** Return the unique point ''P'' such that ''x(P) = x'' and ''y(P) = y'' if ''y mod 2 = 0'' or ''y(P) = p-y'' otherwise.
** The function ''hash<sub>tag</sub>(x)'' where ''tag'' is a UTF-8 encoded tag name and ''x'' is a byte array returns the 32-byte hash ''SHA256(SHA256(tag) || SHA256(tag) || x)''.
==== Public Key Generation ====
@ -158,13 +147,13 @@ The algorithm ''Sign(sk, m)'' is defined as:
* Fail if ''d' = 0'' or ''d' &ge; n''
* Let ''P = d'⋅G''
* Let ''d = d' '' if ''has_even_y(P)'', otherwise let ''d = n - d' ''.
* Let ''t'' be the byte-wise xor of ''bytes(d)'' and ''hash<sub>BIP340/aux</sub>(a)''<ref>The auxiliary random data is hashed (with a unique tag) as a precaution against situations where the randomness may be correlated with the private key itself. It is xored with the private key (rather than combined with it in a hash) to reduce the number of operations exposed to the actual secret key.</ref>.
* Let ''rand = hash<sub>BIP340/nonce</sub>(t || bytes(P) || m)''<ref>Including the [https://moderncrypto.org/mail-archive/curves/2020/001012.html public key as input to the nonce hash] helps ensure the robustness of the signing algorithm by preventing leakage of the secret key if the calculation of the public key ''P'' is performed incorrectly or maliciously, for example if it is left to the caller for performance reasons.</ref>.
* Let ''t'' be the byte-wise xor of ''bytes(d)'' and ''hash<sub>BIP0340/aux</sub>(a)''<ref>The auxiliary random data is hashed (with a unique tag) as a precaution against situations where the randomness may be correlated with the private key itself. It is xored with the private key (rather than combined with it in a hash) to reduce the number of operations exposed to the actual secret key.</ref>.
* Let ''rand = hash<sub>BIP0340/nonce</sub>(t || bytes(P) || m)''<ref>Including the [https://moderncrypto.org/mail-archive/curves/2020/001012.html public key as input to the nonce hash] helps ensure the robustness of the signing algorithm by preventing leakage of the secret key if the calculation of the public key ''P'' is performed incorrectly or maliciously, for example if it is left to the caller for performance reasons.</ref>.
* Let ''k' = int(rand) mod n''<ref>Note that in general, taking a uniformly random 256-bit integer modulo the curve order will produce an unacceptably biased result. However, for the secp256k1 curve, the order is sufficiently close to ''2<sup>256</sup>'' that this bias is not observable (''1 - n / 2<sup>256</sup>'' is around ''1.27 * 2<sup>-128</sup>'').</ref>.
* Fail if ''k' = 0''.
* Let ''R = k'⋅G''.
* Let ''k = k' '' if ''has_square_y(R)'', otherwise let ''k = n - k' ''.
* Let ''e = int(hash<sub>BIP340/challenge</sub>(bytes(R) || bytes(P) || m)) mod n''.
* Let ''k = k' '' if ''has_even_y(R)'', otherwise let ''k = n - k' ''.
* Let ''e = int(hash<sub>BIP0340/challenge</sub>(bytes(R) || bytes(P) || m)) mod n''.
* Let ''sig = bytes(R) || bytes((k + ed) mod n)''.
* If ''Verify(bytes(P), m, sig)'' (see below) returns failure, abort<ref>Verifying the signature before leaving the signer prevents random or attacker provoked computation errors. This prevents publishing invalid signatures which may leak information about the secret key. It is recommended, but can be omitted if the computation cost is prohibitive.</ref>.
* Return the signature ''sig''.
@ -190,17 +179,17 @@ Input:
* A signature ''sig'': a 64-byte array
The algorithm ''Verify(pk, m, sig)'' is defined as:
* Let ''P = lift_x_even_y(int(pk))''; fail if that fails.
* Let ''P = lift_x(int(pk))''; fail if that fails.
* Let ''r = int(sig[0:32])''; fail if ''r &ge; p''.
* Let ''s = int(sig[32:64])''; fail if ''s &ge; n''.
* Let ''e = int(hash<sub>BIP340/challenge</sub>(bytes(r) || bytes(P) || m)) mod n''.
* Let ''e = int(hash<sub>BIP0340/challenge</sub>(bytes(r) || bytes(P) || m)) mod n''.
* Let ''R = s⋅G - e⋅P''.
* Fail if ''not has_square_y(R)'' or ''x(R) &ne; r''.
* Fail if ''not has_even_y(R)'' or ''x(R) &ne; r''.
* Return success iff no failure occurred before reaching this point.
For every valid secret key ''sk'' and message ''m'', ''Verify(PubKey(sk),m,Sign(sk,m))'' will succeed.
Note that the correctness of verification relies on the fact that ''lift_x_even_y'' always returns a point with an even Y coordinate. A hypothetical verification algorithm that treats points as public keys, and takes the point ''P'' directly as input would fail any time a point with odd Y is used. While it is possible to correct for this by negating points with odd Y coordinate before further processing, this would result in a scheme where every (message, signature) pair is valid for two public keys (a type of malleability that exists for ECDSA as well, but we don't wish to retain). We avoid these problems by treating just the X coordinate as public key.
Note that the correctness of verification relies on the fact that ''lift_x'' always returns a point with an even Y coordinate. A hypothetical verification algorithm that treats points as public keys, and takes the point ''P'' directly as input would fail any time a point with odd Y is used. While it is possible to correct for this by negating points with odd Y coordinate before further processing, this would result in a scheme where every (message, signature) pair is valid for two public keys (a type of malleability that exists for ECDSA as well, but we don't wish to retain). We avoid these problems by treating just the X coordinate as public key.
==== Batch Verification ====
@ -213,26 +202,16 @@ Input:
The algorithm ''BatchVerify(pk<sub>1..u</sub>, m<sub>1..u</sub>, sig<sub>1..u</sub>)'' is defined as:
* Generate ''u-1'' random integers ''a<sub>2...u</sub>'' in the range ''1...n-1''. They are generated deterministically using a [https://en.wikipedia.org/wiki/Cryptographically_secure_pseudorandom_number_generator CSPRNG] seeded by a cryptographic hash of all inputs of the algorithm, i.e. ''seed = seed_hash(pk<sub>1</sub>..pk<sub>u</sub> || m<sub>1</sub>..m<sub>u</sub> || sig<sub>1</sub>..sig<sub>u</sub> )''. A safe choice is to instantiate ''seed_hash'' with SHA256 and use [https://tools.ietf.org/html/rfc8439 ChaCha20] with key ''seed'' as a CSPRNG to generate 256-bit integers, skipping integers not in the range ''1...n-1''.
* For ''i = 1 .. u'':
** Let ''P<sub>i</sub> = lift_x_even_y(int(pk<sub>i</sub>))''; fail if it fails.
** Let ''P<sub>i</sub> = lift_x(int(pk<sub>i</sub>))''; fail if it fails.
** Let ''r<sub>i</sub> = int(sig<sub>i</sub>[0:32])''; fail if ''r<sub>i</sub> &ge; p''.
** Let ''s<sub>i</sub> = int(sig<sub>i</sub>[32:64])''; fail if ''s<sub>i</sub> &ge; n''.
** Let ''e<sub>i</sub> = int(hash<sub>BIP340/challenge</sub>(bytes(r<sub>i</sub>) || bytes(P<sub>i</sub>) || m<sub>i</sub>)) mod n''.
** Let ''R<sub>i</sub> = lift_x_square_y(r<sub>i</sub>)''; fail if ''lift_x_square_y(r<sub>i</sub>)'' fails.
** Let ''e<sub>i</sub> = int(hash<sub>BIP0340/challenge</sub>(bytes(r<sub>i</sub>) || bytes(P<sub>i</sub>) || m<sub>i</sub>)) mod n''.
** Let ''R<sub>i</sub> = lift_x(r<sub>i</sub>)''; fail if ''lift_x(r<sub>i</sub>)'' fails.
* Fail if ''(s<sub>1</sub> + a<sub>2</sub>s<sub>2</sub> + ... + a<sub>u</sub>s<sub>u</sub>)⋅G &ne; R<sub>1</sub> + a<sub>2</sub>⋅R<sub>2</sub> + ... + a<sub>u</sub>⋅R<sub>u</sub> + e<sub>1</sub>⋅P<sub>1</sub> + (a<sub>2</sub>e<sub>2</sub>)⋅P<sub>2</sub> + ... + (a<sub>u</sub>e<sub>u</sub>)⋅P<sub>u</sub>''.
* Return success iff no failure occurred before reaching this point.
If all individual signatures are valid (i.e., ''Verify'' would return success for them), ''BatchVerify'' will always return success. If at least one signature is invalid, ''BatchVerify'' will return success with at most a negligible probability.
=== Optimizations ===
Many techniques are known for optimizing elliptic curve implementations. Several of them apply here, but are out of scope for this document. Two are listed below however, as they are relevant to the design decisions:
'''Squareness testing''' The function ''is_square(x)'' is defined as above, but can be computed more efficiently using an [https://en.wikipedia.org/wiki/Jacobi_symbol#Calculating_the_Jacobi_symbol extended GCD algorithm].
'''Jacobian coordinates''' Elliptic Curve operations can be implemented more efficiently by using [https://en.wikibooks.org/wiki/Cryptography/Prime_Curve/Jacobian_Coordinates Jacobian coordinates]. Elliptic Curve operations implemented this way avoid many intermediate modular inverses (which are computationally expensive), and the scheme proposed in this document is in fact designed to not need any inversions at all for verification. When operating on a point ''P'' with Jacobian coordinates ''(x,y,z)'' which is not the point at infinity and for which ''x(P)'' is defined as ''x / z<sup>2</sup>'' and ''y(P)'' is defined as ''y / z<sup>3</sup>'':
* ''has_square_y(P)'' can be implemented as ''is_square(yz mod p)''.
* ''x(P) &ne; r'' can be implemented as ''(0 &le; r < p) and (x &ne; z<sup>2</sup>r mod p)''.
== Applications ==
There are several interesting applications beyond simple signatures.

View file

@ -66,7 +66,7 @@ def bytes_from_point(P: Point) -> bytes:
def xor_bytes(b0: bytes, b1: bytes) -> bytes:
return bytes(x ^ y for (x, y) in zip(b0, b1))
def lift_x_square_y(b: bytes) -> Optional[Point]:
def lift_x(b: bytes) -> Optional[Point]:
x = int_from_bytes(b)
if x >= p:
return None
@ -74,14 +74,7 @@ def lift_x_square_y(b: bytes) -> Optional[Point]:
y = pow(y_sq, (p + 1) // 4, p)
if pow(y, 2, p) != y_sq:
return None
return (x, y)
def lift_x_even_y(b: bytes) -> Optional[Point]:
P = lift_x_square_y(b)
if P is None:
return None
else:
return (x(P), y(P) if y(P) % 2 == 0 else p - y(P))
return (x, y if y & 1 == 0 else p-y)
def int_from_bytes(b: bytes) -> int:
return int.from_bytes(b, byteorder="big")
@ -89,15 +82,6 @@ def int_from_bytes(b: bytes) -> int:
def hash_sha256(b: bytes) -> bytes:
return hashlib.sha256(b).digest()
def is_square(x: int) -> bool:
return int(pow(x, (p - 1) // 2, p)) == 1
def has_square_y(P: Optional[Point]) -> bool:
infinity = is_infinity(P)
if infinity: return False
assert P is not None
return is_square(y(P))
def has_even_y(P: Point) -> bool:
return y(P) % 2 == 0
@ -120,14 +104,14 @@ def schnorr_sign(msg: bytes, seckey: bytes, aux_rand: bytes) -> bytes:
P = point_mul(G, d0)
assert P is not None
d = d0 if has_even_y(P) else n - d0
t = xor_bytes(bytes_from_int(d), tagged_hash("BIP340/aux", aux_rand))
k0 = int_from_bytes(tagged_hash("BIP340/nonce", t + bytes_from_point(P) + msg)) % n
t = xor_bytes(bytes_from_int(d), tagged_hash("BIP0340/aux", aux_rand))
k0 = int_from_bytes(tagged_hash("BIP0340/nonce", t + bytes_from_point(P) + msg)) % n
if k0 == 0:
raise RuntimeError('Failure. This happens only with negligible probability.')
R = point_mul(G, k0)
assert R is not None
k = n - k0 if not has_square_y(R) else k0
e = int_from_bytes(tagged_hash("BIP340/challenge", bytes_from_point(R) + bytes_from_point(P) + msg)) % n
k = n - k0 if not has_even_y(R) else k0
e = int_from_bytes(tagged_hash("BIP0340/challenge", bytes_from_point(R) + bytes_from_point(P) + msg)) % n
sig = bytes_from_point(R) + bytes_from_int((k + e * d) % n)
debug_print_vars()
if not schnorr_verify(msg, bytes_from_point(P), sig):
@ -141,15 +125,15 @@ def schnorr_verify(msg: bytes, pubkey: bytes, sig: bytes) -> bool:
raise ValueError('The public key must be a 32-byte array.')
if len(sig) != 64:
raise ValueError('The signature must be a 64-byte array.')
P = lift_x_even_y(pubkey)
P = lift_x(pubkey)
r = int_from_bytes(sig[0:32])
s = int_from_bytes(sig[32:64])
if (P is None) or (r >= p) or (s >= n):
debug_print_vars()
return False
e = int_from_bytes(tagged_hash("BIP340/challenge", sig[0:32] + pubkey + msg)) % n
e = int_from_bytes(tagged_hash("BIP0340/challenge", sig[0:32] + pubkey + msg)) % n
R = point_add(point_mul(G, s), point_mul(P, n - e))
if (R is None) or (not has_square_y(R)) or (x(R) != r):
if (R is None) or (not has_even_y(R)) or (x(R) != r):
debug_print_vars()
return False
debug_print_vars()

View file

@ -1,16 +1,16 @@
index,secret key,public key,aux_rand,message,signature,verification result,comment
0,0000000000000000000000000000000000000000000000000000000000000003,F9308A019258C31049344F85F89D5229B531C845836F99B08601F113BCE036F9,0000000000000000000000000000000000000000000000000000000000000000,0000000000000000000000000000000000000000000000000000000000000000,067E337AD551B2276EC705E43F0920926A9CE08AC68159F9D258C9BBA412781C9F059FCDF4824F13B3D7C1305316F956704BB3FEA2C26142E18ACD90A90C947E,TRUE,
1,B7E151628AED2A6ABF7158809CF4F3C762E7160F38B4DA56A784D9045190CFEF,DFF1D77F2A671C5F36183726DB2341BE58FEAE1DA2DECED843240F7B502BA659,0000000000000000000000000000000000000000000000000000000000000001,243F6A8885A308D313198A2E03707344A4093822299F31D0082EFA98EC4E6C89,0E12B8C520948A776753A96F21ABD7FDC2D7D0C0DDC90851BE17B04E75EF86A47EF0DA46C4DC4D0D1BCB8668C2CE16C54C7C23A6716EDE303AF86774917CF928,TRUE,
2,C90FDAA22168C234C4C6628B80DC1CD129024E088A67CC74020BBEA63B14E5C9,DD308AFEC5777E13121FA72B9CC1B7CC0139715309B086C960E18FD969774EB8,C87AA53824B4D7AE2EB035A2B5BBBCCC080E76CDC6D1692C4B0B62D798E6D906,7E2D58D8B3BCDF1ABADEC7829054F90DDA9805AAB56C77333024B9D0A508B75C,FC012F9FB8FE00A358F51EF93DCE0DC0C895F6E9A87C6C4905BC820B0C3677616B8737D14E703AF8E16E22E5B8F26227D41E5128F82D86F747244CC289C74D1D,TRUE,
3,0B432B2677937381AEF05BB02A66ECD012773062CF3FA2549E44F58ED2401710,25D1DFF95105F5253C4022F628A996AD3A0D95FBF21D468A1B33F8C160D8F517,FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF,FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF,FC132D4E426DFF535AEC0FA7083AC5118BC1D5FFFD848ABD8290C23F271CA0DD11AEDCEA3F55DA9BD677FE29C9DDA0CF878BCE43FDE0E313D69D1AF7A5AE8369,TRUE,test fails if msg is reduced modulo p or n
4,,D69C3509BB99E412E68B0FE8544E72837DFA30746D8BE2AA65975F29D22DC7B9,,4DF3C3F68FCC83B27E9D42C90431A72499F17875C81A599B566C9889B9696703,00000000000000000000003B78CE563F89A0ED9414F5AA28AD0D96D6795F9C630EC50E5363E227ACAC6F542CE1C0B186657E0E0D1A6FFE283A33438DE4738419,TRUE,
5,,EEFDEA4CDB677750A420FEE807EACF21EB9898AE79B9768766E4FAA04A2D4A34,,243F6A8885A308D313198A2E03707344A4093822299F31D0082EFA98EC4E6C89,7036D6BFE1837AE919631039A2CF652A295DFAC9A8BBB0806014B2F48DD7C807941607B563ABBA414287F374A332BA3636DE009EE1EF551A17796B72B68B8A24,FALSE,public key not on the curve
6,,DFF1D77F2A671C5F36183726DB2341BE58FEAE1DA2DECED843240F7B502BA659,,243F6A8885A308D313198A2E03707344A4093822299F31D0082EFA98EC4E6C89,F9308A019258C31049344F85F89D5229B531C845836F99B08601F113BCE036F995A579DA959FA739FCE39E8BD16FECB5CDCF97060B2C73CDE60E87ABCA1AA5D9,FALSE,has_square_y(R) is false
7,,DFF1D77F2A671C5F36183726DB2341BE58FEAE1DA2DECED843240F7B502BA659,,243F6A8885A308D313198A2E03707344A4093822299F31D0082EFA98EC4E6C89,F8704654F4687B7365ED32E796DE92761390A3BCC495179BFE073817B7ED32824E76B987F7C1F9A751EF5C343F7645D3CFFC7D570B9A7192EBF1898E1344E3BF,FALSE,negated message
8,,DFF1D77F2A671C5F36183726DB2341BE58FEAE1DA2DECED843240F7B502BA659,,243F6A8885A308D313198A2E03707344A4093822299F31D0082EFA98EC4E6C89,7036D6BFE1837AE919631039A2CF652A295DFAC9A8BBB0806014B2F48DD7C8076BE9F84A9C5445BEBD780C8B5CCD45C883D0DC47CD594B21A858F31A19AAB71D,FALSE,negated s value
9,,DFF1D77F2A671C5F36183726DB2341BE58FEAE1DA2DECED843240F7B502BA659,,243F6A8885A308D313198A2E03707344A4093822299F31D0082EFA98EC4E6C89,00000000000000000000000000000000000000000000000000000000000000009915EE59F07F9DBBAEDC31BFCC9B34AD49DE669CD24773BCED77DDA36D073EC8,FALSE,sG - eP is infinite. Test fails in single verification if has_square_y(inf) is defined as true and x(inf) as 0
10,,DFF1D77F2A671C5F36183726DB2341BE58FEAE1DA2DECED843240F7B502BA659,,243F6A8885A308D313198A2E03707344A4093822299F31D0082EFA98EC4E6C89,0000000000000000000000000000000000000000000000000000000000000001C7EC918B2B9CF34071BB54BED7EB4BB6BAB148E9A7E36E6B228F95DFA08B43EC,FALSE,sG - eP is infinite. Test fails in single verification if has_square_y(inf) is defined as true and x(inf) as 1
11,,DFF1D77F2A671C5F36183726DB2341BE58FEAE1DA2DECED843240F7B502BA659,,243F6A8885A308D313198A2E03707344A4093822299F31D0082EFA98EC4E6C89,4A298DACAE57395A15D0795DDBFD1DCB564DA82B0F269BC70A74F8220429BA1D941607B563ABBA414287F374A332BA3636DE009EE1EF551A17796B72B68B8A24,FALSE,sig[0:32] is not an X coordinate on the curve
12,,DFF1D77F2A671C5F36183726DB2341BE58FEAE1DA2DECED843240F7B502BA659,,243F6A8885A308D313198A2E03707344A4093822299F31D0082EFA98EC4E6C89,FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEFFFFFC2F941607B563ABBA414287F374A332BA3636DE009EE1EF551A17796B72B68B8A24,FALSE,sig[0:32] is equal to field size
13,,DFF1D77F2A671C5F36183726DB2341BE58FEAE1DA2DECED843240F7B502BA659,,243F6A8885A308D313198A2E03707344A4093822299F31D0082EFA98EC4E6C89,7036D6BFE1837AE919631039A2CF652A295DFAC9A8BBB0806014B2F48DD7C807FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEBAAEDCE6AF48A03BBFD25E8CD0364141,FALSE,sig[32:64] is equal to curve order
14,,FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEFFFFFC30,,243F6A8885A308D313198A2E03707344A4093822299F31D0082EFA98EC4E6C89,7036D6BFE1837AE919631039A2CF652A295DFAC9A8BBB0806014B2F48DD7C807941607B563ABBA414287F374A332BA3636DE009EE1EF551A17796B72B68B8A24,FALSE,public key is not a valid X coordinate because it exceeds the field size
0,0000000000000000000000000000000000000000000000000000000000000003,F9308A019258C31049344F85F89D5229B531C845836F99B08601F113BCE036F9,0000000000000000000000000000000000000000000000000000000000000000,0000000000000000000000000000000000000000000000000000000000000000,E907831F80848D1069A5371B402410364BDF1C5F8307B0084C55F1CE2DCA821525F66A4A85EA8B71E482A74F382D2CE5EBEEE8FDB2172F477DF4900D310536C0,TRUE,
1,B7E151628AED2A6ABF7158809CF4F3C762E7160F38B4DA56A784D9045190CFEF,DFF1D77F2A671C5F36183726DB2341BE58FEAE1DA2DECED843240F7B502BA659,0000000000000000000000000000000000000000000000000000000000000001,243F6A8885A308D313198A2E03707344A4093822299F31D0082EFA98EC4E6C89,6896BD60EEAE296DB48A229FF71DFE071BDE413E6D43F917DC8DCF8C78DE33418906D11AC976ABCCB20B091292BFF4EA897EFCB639EA871CFA95F6DE339E4B0A,TRUE,
2,C90FDAA22168C234C4C6628B80DC1CD129024E088A67CC74020BBEA63B14E5C9,DD308AFEC5777E13121FA72B9CC1B7CC0139715309B086C960E18FD969774EB8,C87AA53824B4D7AE2EB035A2B5BBBCCC080E76CDC6D1692C4B0B62D798E6D906,7E2D58D8B3BCDF1ABADEC7829054F90DDA9805AAB56C77333024B9D0A508B75C,5831AAEED7B44BB74E5EAB94BA9D4294C49BCF2A60728D8B4C200F50DD313C1BAB745879A5AD954A72C45A91C3A51D3C7ADEA98D82F8481E0E1E03674A6F3FB7,TRUE,
3,0B432B2677937381AEF05BB02A66ECD012773062CF3FA2549E44F58ED2401710,25D1DFF95105F5253C4022F628A996AD3A0D95FBF21D468A1B33F8C160D8F517,FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF,FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF,7EB0509757E246F19449885651611CB965ECC1A187DD51B64FDA1EDC9637D5EC97582B9CB13DB3933705B32BA982AF5AF25FD78881EBB32771FC5922EFC66EA3,TRUE,test fails if msg is reduced modulo p or n
4,,D69C3509BB99E412E68B0FE8544E72837DFA30746D8BE2AA65975F29D22DC7B9,,4DF3C3F68FCC83B27E9D42C90431A72499F17875C81A599B566C9889B9696703,00000000000000000000003B78CE563F89A0ED9414F5AA28AD0D96D6795F9C6376AFB1548AF603B3EB45C9F8207DEE1060CB71C04E80F593060B07D28308D7F4,TRUE,
5,,EEFDEA4CDB677750A420FEE807EACF21EB9898AE79B9768766E4FAA04A2D4A34,,243F6A8885A308D313198A2E03707344A4093822299F31D0082EFA98EC4E6C89,6CFF5C3BA86C69EA4B7376F31A9BCB4F74C1976089B2D9963DA2E5543E17776969E89B4C5564D00349106B8497785DD7D1D713A8AE82B32FA79D5F7FC407D39B,FALSE,public key not on the curve
6,,DFF1D77F2A671C5F36183726DB2341BE58FEAE1DA2DECED843240F7B502BA659,,243F6A8885A308D313198A2E03707344A4093822299F31D0082EFA98EC4E6C89,FFF97BD5755EEEA420453A14355235D382F6472F8568A18B2F057A14602975563CC27944640AC607CD107AE10923D9EF7A73C643E166BE5EBEAFA34B1AC553E2,FALSE,has_even_y(R) is false
7,,DFF1D77F2A671C5F36183726DB2341BE58FEAE1DA2DECED843240F7B502BA659,,243F6A8885A308D313198A2E03707344A4093822299F31D0082EFA98EC4E6C89,1FA62E331EDBC21C394792D2AB1100A7B432B013DF3F6FF4F99FCB33E0E1515F28890B3EDB6E7189B630448B515CE4F8622A954CFE545735AAEA5134FCCDB2BD,FALSE,negated message
8,,DFF1D77F2A671C5F36183726DB2341BE58FEAE1DA2DECED843240F7B502BA659,,243F6A8885A308D313198A2E03707344A4093822299F31D0082EFA98EC4E6C89,6CFF5C3BA86C69EA4B7376F31A9BCB4F74C1976089B2D9963DA2E5543E177769961764B3AA9B2FFCB6EF947B6887A226E8D7C93E00C5ED0C1834FF0D0C2E6DA6,FALSE,negated s value
9,,DFF1D77F2A671C5F36183726DB2341BE58FEAE1DA2DECED843240F7B502BA659,,243F6A8885A308D313198A2E03707344A4093822299F31D0082EFA98EC4E6C89,0000000000000000000000000000000000000000000000000000000000000000123DDA8328AF9C23A94C1FEECFD123BA4FB73476F0D594DCB65C6425BD186051,FALSE,sG - eP is infinite. Test fails in single verification if has_even_y(inf) is defined as true and x(inf) as 0
10,,DFF1D77F2A671C5F36183726DB2341BE58FEAE1DA2DECED843240F7B502BA659,,243F6A8885A308D313198A2E03707344A4093822299F31D0082EFA98EC4E6C89,00000000000000000000000000000000000000000000000000000000000000017615FBAF5AE28864013C099742DEADB4DBA87F11AC6754F93780D5A1837CF197,FALSE,sG - eP is infinite. Test fails in single verification if has_even_y(inf) is defined as true and x(inf) as 1
11,,DFF1D77F2A671C5F36183726DB2341BE58FEAE1DA2DECED843240F7B502BA659,,243F6A8885A308D313198A2E03707344A4093822299F31D0082EFA98EC4E6C89,4A298DACAE57395A15D0795DDBFD1DCB564DA82B0F269BC70A74F8220429BA1D69E89B4C5564D00349106B8497785DD7D1D713A8AE82B32FA79D5F7FC407D39B,FALSE,sig[0:32] is not an X coordinate on the curve
12,,DFF1D77F2A671C5F36183726DB2341BE58FEAE1DA2DECED843240F7B502BA659,,243F6A8885A308D313198A2E03707344A4093822299F31D0082EFA98EC4E6C89,FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEFFFFFC2F69E89B4C5564D00349106B8497785DD7D1D713A8AE82B32FA79D5F7FC407D39B,FALSE,sig[0:32] is equal to field size
13,,DFF1D77F2A671C5F36183726DB2341BE58FEAE1DA2DECED843240F7B502BA659,,243F6A8885A308D313198A2E03707344A4093822299F31D0082EFA98EC4E6C89,6CFF5C3BA86C69EA4B7376F31A9BCB4F74C1976089B2D9963DA2E5543E177769FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEBAAEDCE6AF48A03BBFD25E8CD0364141,FALSE,sig[32:64] is equal to curve order
14,,FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEFFFFFC30,,243F6A8885A308D313198A2E03707344A4093822299F31D0082EFA98EC4E6C89,6CFF5C3BA86C69EA4B7376F31A9BCB4F74C1976089B2D9963DA2E5543E17776969E89B4C5564D00349106B8497785DD7D1D713A8AE82B32FA79D5F7FC407D39B,FALSE,public key is not a valid X coordinate because it exceeds the field size

1 index secret key public key aux_rand message signature verification result comment
2 0 0000000000000000000000000000000000000000000000000000000000000003 F9308A019258C31049344F85F89D5229B531C845836F99B08601F113BCE036F9 0000000000000000000000000000000000000000000000000000000000000000 0000000000000000000000000000000000000000000000000000000000000000 067E337AD551B2276EC705E43F0920926A9CE08AC68159F9D258C9BBA412781C9F059FCDF4824F13B3D7C1305316F956704BB3FEA2C26142E18ACD90A90C947E E907831F80848D1069A5371B402410364BDF1C5F8307B0084C55F1CE2DCA821525F66A4A85EA8B71E482A74F382D2CE5EBEEE8FDB2172F477DF4900D310536C0 TRUE
3 1 B7E151628AED2A6ABF7158809CF4F3C762E7160F38B4DA56A784D9045190CFEF DFF1D77F2A671C5F36183726DB2341BE58FEAE1DA2DECED843240F7B502BA659 0000000000000000000000000000000000000000000000000000000000000001 243F6A8885A308D313198A2E03707344A4093822299F31D0082EFA98EC4E6C89 0E12B8C520948A776753A96F21ABD7FDC2D7D0C0DDC90851BE17B04E75EF86A47EF0DA46C4DC4D0D1BCB8668C2CE16C54C7C23A6716EDE303AF86774917CF928 6896BD60EEAE296DB48A229FF71DFE071BDE413E6D43F917DC8DCF8C78DE33418906D11AC976ABCCB20B091292BFF4EA897EFCB639EA871CFA95F6DE339E4B0A TRUE
4 2 C90FDAA22168C234C4C6628B80DC1CD129024E088A67CC74020BBEA63B14E5C9 DD308AFEC5777E13121FA72B9CC1B7CC0139715309B086C960E18FD969774EB8 C87AA53824B4D7AE2EB035A2B5BBBCCC080E76CDC6D1692C4B0B62D798E6D906 7E2D58D8B3BCDF1ABADEC7829054F90DDA9805AAB56C77333024B9D0A508B75C FC012F9FB8FE00A358F51EF93DCE0DC0C895F6E9A87C6C4905BC820B0C3677616B8737D14E703AF8E16E22E5B8F26227D41E5128F82D86F747244CC289C74D1D 5831AAEED7B44BB74E5EAB94BA9D4294C49BCF2A60728D8B4C200F50DD313C1BAB745879A5AD954A72C45A91C3A51D3C7ADEA98D82F8481E0E1E03674A6F3FB7 TRUE
5 3 0B432B2677937381AEF05BB02A66ECD012773062CF3FA2549E44F58ED2401710 25D1DFF95105F5253C4022F628A996AD3A0D95FBF21D468A1B33F8C160D8F517 FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF FC132D4E426DFF535AEC0FA7083AC5118BC1D5FFFD848ABD8290C23F271CA0DD11AEDCEA3F55DA9BD677FE29C9DDA0CF878BCE43FDE0E313D69D1AF7A5AE8369 7EB0509757E246F19449885651611CB965ECC1A187DD51B64FDA1EDC9637D5EC97582B9CB13DB3933705B32BA982AF5AF25FD78881EBB32771FC5922EFC66EA3 TRUE test fails if msg is reduced modulo p or n
6 4 D69C3509BB99E412E68B0FE8544E72837DFA30746D8BE2AA65975F29D22DC7B9 4DF3C3F68FCC83B27E9D42C90431A72499F17875C81A599B566C9889B9696703 00000000000000000000003B78CE563F89A0ED9414F5AA28AD0D96D6795F9C630EC50E5363E227ACAC6F542CE1C0B186657E0E0D1A6FFE283A33438DE4738419 00000000000000000000003B78CE563F89A0ED9414F5AA28AD0D96D6795F9C6376AFB1548AF603B3EB45C9F8207DEE1060CB71C04E80F593060B07D28308D7F4 TRUE
7 5 EEFDEA4CDB677750A420FEE807EACF21EB9898AE79B9768766E4FAA04A2D4A34 243F6A8885A308D313198A2E03707344A4093822299F31D0082EFA98EC4E6C89 7036D6BFE1837AE919631039A2CF652A295DFAC9A8BBB0806014B2F48DD7C807941607B563ABBA414287F374A332BA3636DE009EE1EF551A17796B72B68B8A24 6CFF5C3BA86C69EA4B7376F31A9BCB4F74C1976089B2D9963DA2E5543E17776969E89B4C5564D00349106B8497785DD7D1D713A8AE82B32FA79D5F7FC407D39B FALSE public key not on the curve
8 6 DFF1D77F2A671C5F36183726DB2341BE58FEAE1DA2DECED843240F7B502BA659 243F6A8885A308D313198A2E03707344A4093822299F31D0082EFA98EC4E6C89 F9308A019258C31049344F85F89D5229B531C845836F99B08601F113BCE036F995A579DA959FA739FCE39E8BD16FECB5CDCF97060B2C73CDE60E87ABCA1AA5D9 FFF97BD5755EEEA420453A14355235D382F6472F8568A18B2F057A14602975563CC27944640AC607CD107AE10923D9EF7A73C643E166BE5EBEAFA34B1AC553E2 FALSE has_square_y(R) is false has_even_y(R) is false
9 7 DFF1D77F2A671C5F36183726DB2341BE58FEAE1DA2DECED843240F7B502BA659 243F6A8885A308D313198A2E03707344A4093822299F31D0082EFA98EC4E6C89 F8704654F4687B7365ED32E796DE92761390A3BCC495179BFE073817B7ED32824E76B987F7C1F9A751EF5C343F7645D3CFFC7D570B9A7192EBF1898E1344E3BF 1FA62E331EDBC21C394792D2AB1100A7B432B013DF3F6FF4F99FCB33E0E1515F28890B3EDB6E7189B630448B515CE4F8622A954CFE545735AAEA5134FCCDB2BD FALSE negated message
10 8 DFF1D77F2A671C5F36183726DB2341BE58FEAE1DA2DECED843240F7B502BA659 243F6A8885A308D313198A2E03707344A4093822299F31D0082EFA98EC4E6C89 7036D6BFE1837AE919631039A2CF652A295DFAC9A8BBB0806014B2F48DD7C8076BE9F84A9C5445BEBD780C8B5CCD45C883D0DC47CD594B21A858F31A19AAB71D 6CFF5C3BA86C69EA4B7376F31A9BCB4F74C1976089B2D9963DA2E5543E177769961764B3AA9B2FFCB6EF947B6887A226E8D7C93E00C5ED0C1834FF0D0C2E6DA6 FALSE negated s value
11 9 DFF1D77F2A671C5F36183726DB2341BE58FEAE1DA2DECED843240F7B502BA659 243F6A8885A308D313198A2E03707344A4093822299F31D0082EFA98EC4E6C89 00000000000000000000000000000000000000000000000000000000000000009915EE59F07F9DBBAEDC31BFCC9B34AD49DE669CD24773BCED77DDA36D073EC8 0000000000000000000000000000000000000000000000000000000000000000123DDA8328AF9C23A94C1FEECFD123BA4FB73476F0D594DCB65C6425BD186051 FALSE sG - eP is infinite. Test fails in single verification if has_square_y(inf) is defined as true and x(inf) as 0 sG - eP is infinite. Test fails in single verification if has_even_y(inf) is defined as true and x(inf) as 0
12 10 DFF1D77F2A671C5F36183726DB2341BE58FEAE1DA2DECED843240F7B502BA659 243F6A8885A308D313198A2E03707344A4093822299F31D0082EFA98EC4E6C89 0000000000000000000000000000000000000000000000000000000000000001C7EC918B2B9CF34071BB54BED7EB4BB6BAB148E9A7E36E6B228F95DFA08B43EC 00000000000000000000000000000000000000000000000000000000000000017615FBAF5AE28864013C099742DEADB4DBA87F11AC6754F93780D5A1837CF197 FALSE sG - eP is infinite. Test fails in single verification if has_square_y(inf) is defined as true and x(inf) as 1 sG - eP is infinite. Test fails in single verification if has_even_y(inf) is defined as true and x(inf) as 1
13 11 DFF1D77F2A671C5F36183726DB2341BE58FEAE1DA2DECED843240F7B502BA659 243F6A8885A308D313198A2E03707344A4093822299F31D0082EFA98EC4E6C89 4A298DACAE57395A15D0795DDBFD1DCB564DA82B0F269BC70A74F8220429BA1D941607B563ABBA414287F374A332BA3636DE009EE1EF551A17796B72B68B8A24 4A298DACAE57395A15D0795DDBFD1DCB564DA82B0F269BC70A74F8220429BA1D69E89B4C5564D00349106B8497785DD7D1D713A8AE82B32FA79D5F7FC407D39B FALSE sig[0:32] is not an X coordinate on the curve
14 12 DFF1D77F2A671C5F36183726DB2341BE58FEAE1DA2DECED843240F7B502BA659 243F6A8885A308D313198A2E03707344A4093822299F31D0082EFA98EC4E6C89 FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEFFFFFC2F941607B563ABBA414287F374A332BA3636DE009EE1EF551A17796B72B68B8A24 FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEFFFFFC2F69E89B4C5564D00349106B8497785DD7D1D713A8AE82B32FA79D5F7FC407D39B FALSE sig[0:32] is equal to field size
15 13 DFF1D77F2A671C5F36183726DB2341BE58FEAE1DA2DECED843240F7B502BA659 243F6A8885A308D313198A2E03707344A4093822299F31D0082EFA98EC4E6C89 7036D6BFE1837AE919631039A2CF652A295DFAC9A8BBB0806014B2F48DD7C807FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEBAAEDCE6AF48A03BBFD25E8CD0364141 6CFF5C3BA86C69EA4B7376F31A9BCB4F74C1976089B2D9963DA2E5543E177769FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEBAAEDCE6AF48A03BBFD25E8CD0364141 FALSE sig[32:64] is equal to curve order
16 14 FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEFFFFFC30 243F6A8885A308D313198A2E03707344A4093822299F31D0082EFA98EC4E6C89 7036D6BFE1837AE919631039A2CF652A295DFAC9A8BBB0806014B2F48DD7C807941607B563ABBA414287F374A332BA3636DE009EE1EF551A17796B72B68B8A24 6CFF5C3BA86C69EA4B7376F31A9BCB4F74C1976089B2D9963DA2E5543E17776969E89B4C5564D00349106B8497785DD7D1D713A8AE82B32FA79D5F7FC407D39B FALSE public key is not a valid X coordinate because it exceeds the field size

View file

@ -1,6 +1,14 @@
import sys
from reference import *
def is_square(x):
return int(pow(x, (p - 1) // 2, p)) == 1
def has_square_y(P):
"""Determine if P has a square Y coordinate. Used in an earlier draft of BIP340."""
assert not is_infinity(P)
return is_square(P[1])
def vector0():
seckey = bytes_from_int(3)
msg = bytes_from_int(0)
@ -19,9 +27,16 @@ def vector0():
# we should have at least one test vector where the the point reconstructed
# from the public key has a square and one where it has a non-square Y
# coordinate. In this one Y is non-square.
pubkey_point = lift_x_even_y(pubkey)
pubkey_point = lift_x(pubkey)
assert(not has_square_y(pubkey_point))
# For historical reasons (R tiebreaker was squareness and not evenness)
# we should have at least one test vector where the the point reconstructed
# from the R.x coordinate has a square and one where it has a non-square Y
# coordinate. In this one Y is non-square.
R = lift_x(sig[0:32])
assert(not has_square_y(R))
return (seckey, pubkey, aux_rand, msg, sig, "TRUE", None)
def vector1():
@ -30,6 +45,11 @@ def vector1():
aux_rand = bytes_from_int(1)
sig = schnorr_sign(msg, seckey, aux_rand)
# The point reconstructed from the R.x coordinate has a square Y coordinate.
R = lift_x(sig[0:32])
assert(has_square_y(R))
return (seckey, pubkey_gen(seckey), aux_rand, msg, sig, "TRUE", None)
def vector2():
@ -40,13 +60,13 @@ def vector2():
# The point reconstructed from the public key has a square Y coordinate.
pubkey = pubkey_gen(seckey)
pubkey_point = lift_x_even_y(pubkey)
pubkey_point = lift_x(pubkey)
assert(has_square_y(pubkey_point))
# This signature vector would not verify if the implementer checked the
# squareness of the X coordinate of R instead of the Y coordinate.
R = lift_x_square_y(sig[0:32])
assert(not is_square(R[0]))
# evenness of the X coordinate of R instead of the Y coordinate.
R = lift_x(sig[0:32])
assert(R[0] % 2 == 1)
return (seckey, pubkey, aux_rand, msg, sig, "TRUE", None)
@ -66,7 +86,7 @@ def vector3():
# Signs with a given nonce. This can be INSECURE and is only INTENDED FOR
# GENERATING TEST VECTORS. Results in an invalid signature if y(kG) is not
# square.
# even.
def insecure_schnorr_sign_fixed_nonce(msg, seckey0, k):
if len(msg) != 32:
raise ValueError('The message must be a 32-byte array.')
@ -76,12 +96,12 @@ def insecure_schnorr_sign_fixed_nonce(msg, seckey0, k):
P = point_mul(G, seckey0)
seckey = seckey0 if has_even_y(P) else n - seckey0
R = point_mul(G, k)
e = int_from_bytes(tagged_hash("BIP340/challenge", bytes_from_point(R) + bytes_from_point(P) + msg)) % n
e = int_from_bytes(tagged_hash("BIP0340/challenge", bytes_from_point(R) + bytes_from_point(P) + msg)) % n
return bytes_from_point(R) + bytes_from_int((k + e * seckey) % n)
# Creates a singature with a small x(R) by using k = 1/2
# Creates a singature with a small x(R) by using k = -1/2
def vector4():
one_half = 0x7fffffffffffffffffffffffffffffff5d576e7357a4501ddfe92f46681b20a0
one_half = n - 0x7fffffffffffffffffffffffffffffff5d576e7357a4501ddfe92f46681b20a0
seckey = bytes_from_int(0x763758E5CBEEDEE4F7D3FC86F531C36578933228998226672F13C4F0EBE855EB)
msg = bytes_from_int(0x4DF3C3F68FCC83B27E9D42C90431A72499F17875C81A599B566C9889B9696703)
sig = insecure_schnorr_sign_fixed_nonce(msg, seckey, one_half)
@ -100,21 +120,21 @@ def vector5():
sig = schnorr_sign(msg, seckey, default_aux_rand)
pubkey = bytes_from_int(0xEEFDEA4CDB677750A420FEE807EACF21EB9898AE79B9768766E4FAA04A2D4A34)
assert(lift_x_even_y(pubkey) is None)
assert(lift_x(pubkey) is None)
return (None, pubkey, None, msg, sig, "FALSE", "public key not on the curve")
def vector6():
seckey = default_seckey
msg = default_msg
k = 3
k = 6
sig = insecure_schnorr_sign_fixed_nonce(msg, seckey, k)
# Y coordinate of R is not a square
# Y coordinate of R is not even
R = point_mul(G, k)
assert(not has_square_y(R))
assert(not has_even_y(R))
return (None, pubkey_gen(seckey), None, msg, sig, "FALSE", "has_square_y(R) is false")
return (None, pubkey_gen(seckey), None, msg, sig, "FALSE", "has_even_y(R) is false")
def vector7():
seckey = default_seckey
@ -147,7 +167,7 @@ def vector9():
sig = insecure_schnorr_sign_fixed_nonce(msg, seckey, k)
bytes_from_point.__code__ = bytes_from_point_tmp
return (None, pubkey_gen(seckey), None, msg, sig, "FALSE", "sG - eP is infinite. Test fails in single verification if has_square_y(inf) is defined as true and x(inf) as 0")
return (None, pubkey_gen(seckey), None, msg, sig, "FALSE", "sG - eP is infinite. Test fails in single verification if has_even_y(inf) is defined as true and x(inf) as 0")
def bytes_from_point_inf1(P):
if P == None:
@ -166,7 +186,7 @@ def vector10():
sig = insecure_schnorr_sign_fixed_nonce(msg, seckey, k)
bytes_from_point.__code__ = bytes_from_point_tmp
return (None, pubkey_gen(seckey), None, msg, sig, "FALSE", "sG - eP is infinite. Test fails in single verification if has_square_y(inf) is defined as true and x(inf) as 1")
return (None, pubkey_gen(seckey), None, msg, sig, "FALSE", "sG - eP is infinite. Test fails in single verification if has_even_y(inf) is defined as true and x(inf) as 1")
# It's cryptographically impossible to create a test vector that fails if run
# in an implementation which merely misses the check that sig[0:32] is an X
@ -178,7 +198,7 @@ def vector11():
# Replace R's X coordinate with an X coordinate that's not on the curve
x_not_on_curve = bytes_from_int(0x4A298DACAE57395A15D0795DDBFD1DCB564DA82B0F269BC70A74F8220429BA1D)
assert(lift_x_square_y(x_not_on_curve) is None)
assert(lift_x(x_not_on_curve) is None)
sig = x_not_on_curve + sig[32:64]
return (None, pubkey_gen(seckey), None, msg, sig, "FALSE", "sig[0:32] is not an X coordinate on the curve")
@ -222,10 +242,10 @@ def vector14():
sig = schnorr_sign(msg, seckey, default_aux_rand)
pubkey_int = p + 1
pubkey = bytes_from_int(pubkey_int)
assert(lift_x_even_y(pubkey) is None)
assert(lift_x(pubkey) is None)
# If an implementation would reduce a given public key modulo p then the
# pubkey would be valid
assert(lift_x_even_y(bytes_from_int(pubkey_int % p)) is not None)
assert(lift_x(bytes_from_int(pubkey_int % p)) is not None)
return (None, pubkey, None, msg, sig, "FALSE", "public key is not a valid X coordinate because it exceeds the field size")

View file

@ -66,7 +66,7 @@ The following rules only apply when such an output is being spent. Any other out
* If there are at least two witness elements left, script path spending is used:
** Call the second-to-last stack element ''s'', the script.
** The last stack element is called the control block ''c'', and must have length ''33 + 32m'', for a value of ''m'' that is an integer between 0 and 128<ref>'''Why is the Merkle path length limited to 128?''' The optimally space-efficient Merkle tree can be constructed based on the probabilities of the scripts in the leaves, using the Huffman algorithm. This algorithm will construct branches with lengths approximately equal to ''log<sub>2</sub>(1/probability)'', but to have branches longer than 128 you would need to have scripts with an execution chance below 1 in ''2<sup>128</sup>''. As that is our security bound, scripts that truly have such a low chance can probably be removed entirely.</ref>, inclusive. Fail if it does not have such a length.
** Let ''p = c[1:33]'' and let ''P = lift_x_even_y(int(p))'' where ''lift_x_even_y'' and ''[:]'' are defined as in [[bip-0340.mediawiki#design|BIP340]]. Fail if this point is not on the curve.
** Let ''p = c[1:33]'' and let ''P = lift_x(int(p))'' where ''lift_x'' and ''[:]'' are defined as in [[bip-0340.mediawiki#design|BIP340]]. Fail if this point is not on the curve.
** Let ''v = c[0] & 0xfe'' and call it the ''leaf version''<ref>'''What constraints are there on the leaf version?''' First, the leaf version cannot be odd as ''c[0] & 0xfe'' will always be even, and cannot be ''0x50'' as that would result in ambiguity with the annex. In addition, in order to support some forms of static analysis that rely on being able to identify script spends without access to the output being spent, it is recommended to avoid using any leaf versions that would conflict with a valid first byte of either a valid P2WPKH pubkey or a valid P2WSH script (that is, both ''v'' and ''v | 1'' should be an undefined, invalid or disabled opcode or an opcode that is not valid as the first opcode). The values that comply to this rule are the 32 even values between ''0xc0'' and ''0xfe'' and also ''0x66'', ''0x7e'', ''0x80'', ''0x84'', ''0x96'', ''0x98'', ''0xba'', ''0xbc'', ''0xbe''. Note also that this constraint implies that leaf versions should be shared amongst different witness versions, as knowing the witness version requires access to the output being spent.</ref>.
** Let ''k<sub>0</sub> = hash<sub>TapLeaf</sub>(v || compact_size(size of s) || s)''; also call it the ''tapleaf hash''.
** For ''j'' in ''[0,1,...,m-1]'':
@ -152,7 +152,7 @@ Satisfying any of these conditions is sufficient to spend the output.
'''Initial steps''' The first step is determining what the internal key and the organization of the rest of the scripts should be. The specifics are likely application dependent, but here are some general guidelines:
* When deciding between scripts with conditionals (<code>OP_IF</code> etc.) and splitting them up into multiple scripts (each corresponding to one execution path through the original script), it is generally preferable to pick the latter.
* When a single condition requires signatures with multiple keys, key aggregation techniques like MuSig can be used to combine them into a single key. The details are out of scope for this document, but note that this may complicate the signing procedure.
* If one or more of the spending conditions consist of just a single key (after aggregation), the most likely one should be made the internal key. If no such condition exists, it may be worthwhile adding one that consists of an aggregation of all keys participating in all scripts combined; effectively adding an "everyone agrees" branch. If that is inacceptable, pick as internal key a point with unknown discrete logarithm. One example of such a point is ''H = lift_x_even_y(0x0250929b74c1a04954b78b4b6035e97a5e078a5a0f28ec96d547bfee9ace803ac0)'' which is [https://github.com/ElementsProject/secp256k1-zkp/blob/11af7015de624b010424273be3d91f117f172c82/src/modules/rangeproof/main_impl.h#L16 constructed] by taking the hash of the standard uncompressed encoding of the [https://www.secg.org/sec2-v2.pdf secp256k1] base point ''G'' as X coordinate. In order to avoid leaking the information that key path spending is not possible it is recommended to pick a fresh integer ''r'' in the range ''0...n-1'' uniformly at random and use ''H + rG'' as internal key. It is possible to prove that this internal key does not have a known discrete logarithm with respect to ''G'' by revealing ''r'' to a verifier who can then reconstruct how the internal key was created.
* If one or more of the spending conditions consist of just a single key (after aggregation), the most likely one should be made the internal key. If no such condition exists, it may be worthwhile adding one that consists of an aggregation of all keys participating in all scripts combined; effectively adding an "everyone agrees" branch. If that is inacceptable, pick as internal key a point with unknown discrete logarithm. One example of such a point is ''H = lift_x(0x0250929b74c1a04954b78b4b6035e97a5e078a5a0f28ec96d547bfee9ace803ac0)'' which is [https://github.com/ElementsProject/secp256k1-zkp/blob/11af7015de624b010424273be3d91f117f172c82/src/modules/rangeproof/main_impl.h#L16 constructed] by taking the hash of the standard uncompressed encoding of the [https://www.secg.org/sec2-v2.pdf secp256k1] base point ''G'' as X coordinate. In order to avoid leaking the information that key path spending is not possible it is recommended to pick a fresh integer ''r'' in the range ''0...n-1'' uniformly at random and use ''H + rG'' as internal key. It is possible to prove that this internal key does not have a known discrete logarithm with respect to ''G'' by revealing ''r'' to a verifier who can then reconstruct how the internal key was created.
* If the spending conditions do not require a script path, the output key should commit to an unspendable script path instead of having no script path. This can be achieved by computing the output key point as ''Q = P + int(hash<sub>TapTweak</sub>(bytes(P)))G''. <ref>'''Why should the output key always have a taproot commitment, even if there is no script path?'''
If the taproot output key is an aggregate of keys, there is the possibility for a malicious party to add a script path without being noticed by the other parties.
This allows to bypass the multiparty policy and to steal the coin.
@ -180,7 +180,7 @@ def taproot_tweak_pubkey(pubkey, h):
t = int_from_bytes(tagged_hash("TapTweak", pubkey + h))
if t >= SECP256K1_ORDER:
raise ValueError
Q = point_add(lift_x_even_y(int_from_bytes(pubkey)), point_mul(G, t))
Q = point_add(lift_x(int_from_bytes(pubkey)), point_mul(G, t))
return 0 if has_even_y(Q) else 1, bytes_from_int(x(Q))
def taproot_tweak_seckey(seckey0, h):