1
0
mirror of https://github.com/bitcoin/bips.git synced 2025-01-18 21:35:13 +01:00

Optionally print intermediate values in reference code

and make reference code and pseudocode more consistent with each other
This commit is contained in:
Tim Ruffing 2020-03-04 21:21:36 +01:00
parent 39ba507e01
commit a6301c5af0
2 changed files with 56 additions and 18 deletions

View File

@ -136,9 +136,9 @@ Input:
* The secret key ''sk'': a 32-byte array, freshly generated uniformly at random
The algorithm ''PubKey(sk)'' is defined as:
* Let ''d = int(sk)''.
* Fail if ''d = 0'' or ''d ≥ n''.
* Return ''bytes(d⋅G)''.
* Let ''d' = int(sk)''.
* Fail if ''d' = 0'' or ''d' ≥ n''.
* Return ''bytes(d'⋅G)''.
Note that we use a very different public key format (32 bytes) than the ones used by existing systems (which typically use elliptic curve points as public keys, or 33-byte or 65-byte encodings of them). A side effect is that ''PubKey(sk) = PubKey(bytes(n - int(sk))'', so every public key has two corresponding secret keys.

View File

@ -1,6 +1,15 @@
import hashlib
import binascii
# Set DEBUG to True to get a detailed debug output including
# intermediate values during key generation, signing, and
# verification. This is implemented via calls to the
# debug_print_vars() function.
#
# If you want to print values on an individual basis, use
# the pretty() function, e.g., print(pretty(foo)).
DEBUG = False
p = 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEFFFFFC2F
n = 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEBAAEDCE6AF48A03BBFD25E8CD0364141
@ -62,7 +71,7 @@ def lift_x_square_y(b):
y = pow(y_sq, (p + 1) // 4, p)
if pow(y, 2, p) != y_sq:
return None
return [x, y]
return (x, y)
def lift_x_even_y(b):
P = lift_x_square_y(b)
@ -87,32 +96,37 @@ def has_even_y(P):
return y(P) % 2 == 0
def pubkey_gen(seckey):
x = int_from_bytes(seckey)
if not (1 <= x <= n - 1):
d0 = int_from_bytes(seckey)
if not (1 <= d0 <= n - 1):
debug_print_vars()
raise ValueError('The secret key must be an integer in the range 1..n-1.')
P = point_mul(G, x)
P = point_mul(G, d0)
return bytes_from_point(P)
def schnorr_sign(msg, seckey0, aux_rand):
def schnorr_sign(msg, seckey, aux_rand):
if len(msg) != 32:
debug_print_vars()
raise ValueError('The message must be a 32-byte array.')
seckey0 = int_from_bytes(seckey0)
if not (1 <= seckey0 <= n - 1):
d0 = int_from_bytes(seckey)
if not (1 <= d0 <= n - 1):
raise ValueError('The secret key must be an integer in the range 1..n-1.')
if len(aux_rand) != 32:
raise ValueError('aux_rand must be 32 bytes instead of %i.' % len(aux_rand))
P = point_mul(G, seckey0)
seckey = seckey0 if has_even_y(P) else n - seckey0
t = xor_bytes(bytes_from_int(seckey), tagged_hash("BIP340/aux", aux_rand))
P = point_mul(G, d0)
d = d0 if has_even_y(P) else n - d0
t = xor_bytes(bytes_from_int(d), tagged_hash("BIP340/aux", aux_rand))
k0 = int_from_bytes(tagged_hash("BIP340/nonce", t + bytes_from_point(P) + msg)) % n
if k0 == 0:
debug_print_vars()
raise RuntimeError('Failure. This happens only with negligible probability.')
R = point_mul(G, k0)
k = n - k0 if not has_square_y(R) else k0
e = int_from_bytes(tagged_hash("BIP340/challenge", bytes_from_point(R) + bytes_from_point(P) + msg)) % n
sig = bytes_from_point(R) + bytes_from_int((k + e * seckey) % n)
sig = bytes_from_point(R) + bytes_from_int((k + e * d) % n)
if not schnorr_verify(msg, bytes_from_point(P), sig):
debug_print_vars()
raise RuntimeError('The signature does not pass verification.')
debug_print_vars()
return sig
def schnorr_verify(msg, pubkey, sig):
@ -123,26 +137,29 @@ def schnorr_verify(msg, pubkey, sig):
if len(sig) != 64:
raise ValueError('The signature must be a 64-byte array.')
P = lift_x_even_y(pubkey)
if (P is None):
return False
r = int_from_bytes(sig[0:32])
s = int_from_bytes(sig[32:64])
if (r >= p or s >= n):
if (P is None) or (r >= p) or (s >= n):
debug_print_vars()
return False
e = int_from_bytes(tagged_hash("BIP340/challenge", sig[0:32] + pubkey + msg)) % n
R = point_add(point_mul(G, s), point_mul(P, n - e))
if R is None or not has_square_y(R) or x(R) != r:
debug_print_vars()
return False
debug_print_vars()
return True
#
# The following code is only used to verify the test vectors.
#
import csv
import os
import sys
def test_vectors():
all_passed = True
with open('test-vectors.csv', newline='') as csvfile:
with open(os.path.join(sys.path[0], 'test-vectors.csv'), newline='') as csvfile:
reader = csv.reader(csvfile)
reader.__next__()
for row in reader:
@ -185,5 +202,26 @@ def test_vectors():
print('Some test vectors failed.')
return all_passed
#
# The following code is only used for debugging
#
import inspect
def pretty(v):
if isinstance(v, bytes):
return '0x' + v.hex()
if isinstance(v, int):
return pretty(bytes_from_int(v))
if isinstance(v, tuple):
return tuple(map(pretty, v))
return v
def debug_print_vars():
if DEBUG:
frame = inspect.currentframe().f_back
print(' Variables in function ', frame.f_code.co_name, ' at line ', frame.f_lineno, ':', sep='')
for var_name, var_val in frame.f_locals.items():
print(' ' + var_name.rjust(11, ' '), '==', pretty(var_val))
if __name__ == '__main__':
test_vectors()